While glmmTMB is primarily designed for maximum
likelihood estimation (or restricted ML), there are certain situations
where it is convenient to be able to add priors for particular
parameters or sets of parameters, e.g.:
tmbstan package
as part of a fully Bayesian analysis (see below)See Banner, Irvine, and Rodhouse (2020) and Sarma and Kay (2020) for some opinions/discussion of priors.
When priors are specified, glmmTMB will fit a
maximum a posteriori (MAP) estimate. In other words, unlike
most Bayesian estimate procedures that use Markov chain Monte Carlo to
sample the entire parameter space and compute (typically) posterior mean
or median value of the parameters, glmmTMB will find the
mode of the posterior distribution or the most likely
value. The MAP estimate is theoretically less useful than the posterior
mean or median, but is often a useful approximation.
One can apply tmbstan to a fitted glmmTMB
model that specifies priors (see the MCMC
vignette in order to get samples from the posterior distribution as
in a more typical Bayesian analysis.
library(glmmTMB)
library(lme4)
library(blme)
library(broom.mixed)
library(purrr)
library(dplyr)
library(ggplot2); theme_set(theme_bw())
OkIt <- unname(palette.colors(n = 8, palette = "Okabe-Ito"))[-1]From Bolker (2015), an example where we can regularize nearly complete separation: see the more complete description here.
For comparison, we’ll fit (1) unpenalized/prior-free
glmer and glmmTMB models; (2)
blme::bglmer(), which adds a prior to a glmer
model; (3) glmmTMB with priors.
We read the data and drop one observation that is identified as having an extremely large residual:
cdat <- readRDS(system.file("vignette_data", "culcita.rds", package = "glmmTMB"))
cdatx <- cdat[-20,]Fit glmer, glmmTMB without priors, as well
as a bglmer model with regularizing priors (mean 0, SD 3,
expressed as a 4 \(\times\) 4 diagonal
covariance matrix with diagonal elements (variances) equal to 9:
form <- predation~ttt+(1|block)
cmod_glmer <- glmer(form, data=cdatx, family=binomial)
cmod_glmmTMB <- glmmTMB(form, data=cdatx, family=binomial)
cmod_bglmer <- bglmer(form, data=cdatx, family=binomial,
                    fixef.prior = normal(cov = diag(9,4)))Specify the same priors for glmmTMB: note that we have
to specify regularizing priors for the intercept and the remaining
fixed-effect priors separately
cprior <- data.frame(prior = rep("normal(0,3)", 2),
                     class = rep("beta", 2),
                     coef = c("(Intercept)", ""))
print(cprior)##         prior class        coef
## 1 normal(0,3)  beta (Intercept)
## 2 normal(0,3)  betaCheck (approximate) equality of estimated coefficients:
stopifnot(all.equal(coef(summary(cmod_bglmer)),
          coef(summary(cmod_glmmTMB_p))$cond,
          tolerance = 5e-2))Pack the models into a list and get the coefficients:
cmods <- ls(pattern = "cmod_[bg].*")
cmod_list <- mget(cmods) |> setNames(gsub("cmod_", "", cmods))
cres <- (purrr::map_dfr(cmod_list,
                        ~tidy(., conf.int = TRUE, effects = "fixed"),
                        .id = "model")
    |> select(model, term, estimate, lwr = conf.low, upr = conf.high)
    |> mutate(across(model,
                     ~factor(., levels = c("glmer", "glmmTMB",
                                           "glmmTMB_p", "bglmer"))))
)
ggplot(cres, aes(x = estimate, y = term, colour = model)) +
    geom_pointrange(aes(xmin = lwr, xmax = upr),
                    position = position_dodge(width = 0.5))+
    scale_colour_manual(values = OkIt)Also from Bolker (2015):
gdat <- readRDS(system.file("vignette_data", "gophertortoise.rds", package = "glmmTMB"))
form <- shells~prev+offset(log(Area))+factor(year)+(1|Site)
gmod_glmer <- glmer(form , family=poisson, data=gdat)## boundary (singular) fit: see help('isSingular')gmod_bglmer <- bglmer(form, family=poisson, data=gdat)
## cov.prior = gamma(shape = 2.5, rate = 0, common.scale = TRUE, posterior.scale = "sd"))
gmod_glmmTMB <- glmmTMB(form, family = poisson, data = gdat) ## 1e-5
## bglmer default corresponds to gamma(Inf, 2.5)
gprior <- data.frame(prior = "gamma(1e8, 2.5)",
                     class = "theta",
                     coef = "")
gmod_glmmTMB_p <- update(gmod_glmmTMB, priors = gprior)
vc1 <- c(VarCorr(gmod_glmmTMB_p)$cond$Site)
vc2 <- c(VarCorr(gmod_bglmer)$Site)
stopifnot(all.equal(vc1, vc2, tolerance = 5e-4))Pack the models into a list and get the coefficients:
The code for extracting CIs is currently a little bit ugly (because
profile confidence intervals aren’t quite working for
glmmTMB objects with broom.mixed::tidy(), and
because profile CIs can be fussy in any case)
blme defaults: Wishart(dim + 2.5), or gamma(2.5). For
dim = 1 (scalar), Wishart(n) corresponds to chi-squared(n), or
gamma(shape = n/2, scale = n/2). Chung et al propose
gamma(2, Inf); not sure why blme uses
gamma(2.5) instead? or if specified via Wishart, shape =
3.5 → gamma shape of 1.75?
up2date might get annoying …bglmer profile CI failing (in
broom.mixed, but not externally?)blme default priors_cor or _sd on the R side (will pick out
sd-specific or cor-specific elements)It seems useful to use the API/user interface from
brms
brmshas lots of downstream dependencies that
glmmTMB doesn’t
    rd <- \(x) tools::package_dependencies("brms", recursive = TRUE)[[x]]
## rd <- \(x) packrat:::recursivePackageDependencies(x, ignores = "", lib.loc =    .libPaths()[1])
## not sure why packrat and tools get different answers, but difference
## doesn't matter much
brms_dep <- rd("brms")
glmmTMB_dep <- rd("glmmTMB")
length(setdiff(brms_dep, glmmTMB_dep))## requires brms to evaluate, wanted to avoid putting it in Suggests: ...
bprior <- c(prior_string("normal(0,10)", class = "b"),
            prior(normal(1,2), class = b, coef = treat),
            prior_(~cauchy(0,2), class = ~sd,
                   group = ~subject, coef = ~Intercept))## Classes 'brmsprior' and 'data.frame':    3 obs. of  10 variables:
##  $ prior : chr  "normal(0,10)" "normal(1, 2)" "cauchy(0, 2)"
##  $ class : chr  "b" "b" "sd"
##  $ coef  : chr  "" "treat" "Intercept"
##  $ group : chr  "" "" "subject"
##  $ resp  : chr  "" "" ""
##  $ dpar  : chr  "" "" ""
##  $ nlpar : chr  "" "" ""
##  $ lb    : chr  NA NA NA
##  $ ub    : chr  NA NA NA
##  $ source: chr  "user" "user" "user"We probably only need to pay attention to the columns
prior, class, coef,
group. For our purposes, prior is the name and
parameters; class will be the name of the parameter vector;
coef will specify an index within the vector (could be a
number or name?)
TMB-side data structure:
vector of prior codes
enum, .valid_priors: see
make-enum in the Makefilelist of parameter vectors? or prior_p1,
prior_p2, prior_p3 (do any prior families have
more than two parameters? What about non-scalar parameters, e.g. Wishart
priors … ???)
vector of parameter codes (another enum?)
(beta, theta, thetaf …
b ?)
each index (corresponding to coef) is scalar, either
NA (prior over all elements) or integer (a specific element)
new loop after loglik loop to add (negative log-)prior components: loop over prior spec
add theta_corr, theta_sd as enum
options (synonyms: ranef_corr, ranef_sd) to
specify penalizing only SD vector or only corr vector from a particular
element?
‘coef’ picks out elements
colnames(X) of
corresponding componenttheta vectorranef_corr, ranef_sd: find indices …
(depends on RE structure)