Extended version of the epil dataset of the MASS package. The three transformed variables Visit, Base, and Age used by Booth et al. (2003) have been added to epil.

epil2

Format

A data frame with 236 observations on the following 12 variables:

y

an integer vector.

trt

a factor with levels "placebo" and "progabide".

base

an integer vector.

age

an integer vector.

V4

an integer vector.

subject

an integer vector.

period

an integer vector.

lbase

a numeric vector.

lage

a numeric vector.

Visit

(rep(1:4,59) - 2.5) / 5.

Base

log(base/4).

Age

log(age).

References

Booth, J.G., G. Casella, H. Friedl, and J.P. Hobert. (2003) Negative binomial loglinear mixed models. Statistical Modelling 3, 179--191.

Examples

# \donttest{
epil2$subject <- factor(epil2$subject)
op <- options(digits=3)
(fm <- glmmTMB(y ~ Base*trt + Age + Visit + (Visit|subject),
              data=epil2, family=nbinom2))
#> Formula:          y ~ Base * trt + Age + Visit + (Visit | subject)
#> Data: epil2
#>      AIC      BIC   logLik df.resid 
#>     1269     1304     -625      226 
#> Random-effects (co)variances:
#> 
#> Conditional model:
#>  Groups  Name        Std.Dev. Corr  
#>  subject (Intercept) 0.4660         
#>          Visit       0.0073   -1.00 
#> 
#> Number of obs: 236 / Conditional model: subject, 59
#> 
#> Dispersion parameter for nbinom2 family (): 7.46 
#> 
#> Fixed Effects:
#> 
#> Conditional model:
#>       (Intercept)               Base       trtprogabide                Age  
#>            -1.322              0.884             -0.928              0.473  
#>             Visit  Base:trtprogabide  
#>            -0.268              0.336  
meths <- methods(class = class(fm))
if((Rv <- getRversion()) > "3.1.3") {
  funs <- attr(meths, "info")[, "generic"]
  funs <- setdiff(funs, "profile")  ## too slow! pkgdown is trying to run this??
  for(fun in funs[is.na(match(funs, "getME"))]) {
        cat(sprintf("%s:\n-----\n", fun))
        r <- tryCatch( get(fun)(fm), error=identity)
        if (inherits(r, "error")) cat("** Error:", r$message,"\n")
        else tryCatch( print(r) )
        cat(sprintf("---end{%s}--------------\n\n", fun))
  }
}
#> Anova:
#> -----
#> Analysis of Deviance Table (Type II Wald chisquare tests)
#> 
#> Response: y
#>           Chisq Df Pr(>Chisq)    
#> Base     107.66  1     <2e-16 ***
#> trt        4.52  1      0.033 *  
#> Age        1.79  1      0.180    
#> Visit      2.40  1      0.121    
#> Base:trt   2.71  1      0.100 .  
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> ---end{Anova}--------------
#> 
#> Effect:
#> -----
#> ** Error: argument "mod" is missing, with no default 
#> ---end{Effect}--------------
#> 
#> VarCorr:
#> -----
#> 
#> Conditional model:
#>  Groups  Name        Std.Dev. Corr  
#>  subject (Intercept) 0.4660         
#>          Visit       0.0073   -1.00 
#> ---end{VarCorr}--------------
#> 
#> anova:
#> -----
#> ** Error: no single-model anova() method for glmmTMB 
#> ---end{anova}--------------
#> 
#> coef:
#> -----
#> $subject
#>    (Intercept)  Base trtprogabide   Age  Visit Base:trtprogabide
#> 1       -1.286 0.884       -0.928 0.473 -0.269             0.336
#> 2       -1.275 0.884       -0.928 0.473 -0.269             0.336
#> 3       -1.037 0.884       -0.928 0.473 -0.273             0.336
#> 4       -1.196 0.884       -0.928 0.473 -0.270             0.336
#> 5       -1.312 0.884       -0.928 0.473 -0.269             0.336
#> 6       -1.505 0.884       -0.928 0.473 -0.266             0.336
#> 7       -1.442 0.884       -0.928 0.473 -0.267             0.336
#> 8       -0.975 0.884       -0.928 0.473 -0.274             0.336
#> 9       -1.489 0.884       -0.928 0.473 -0.266             0.336
#> 10      -0.528 0.884       -0.928 0.473 -0.281             0.336
#> 11      -1.192 0.884       -0.928 0.473 -0.270             0.336
#> 12      -1.353 0.884       -0.928 0.473 -0.268             0.336
#> 13      -1.396 0.884       -0.928 0.473 -0.267             0.336
#> 14      -1.395 0.884       -0.928 0.473 -0.267             0.336
#> 15      -1.532 0.884       -0.928 0.473 -0.265             0.336
#> 16      -2.076 0.884       -0.928 0.473 -0.257             0.336
#> 17      -1.979 0.884       -0.928 0.473 -0.258             0.336
#> 18      -1.168 0.884       -0.928 0.473 -0.271             0.336
#> 19      -1.545 0.884       -0.928 0.473 -0.265             0.336
#> 20      -1.424 0.884       -0.928 0.473 -0.267             0.336
#> 21      -1.314 0.884       -0.928 0.473 -0.269             0.336
#> 22      -1.042 0.884       -0.928 0.473 -0.273             0.336
#> 23      -1.598 0.884       -0.928 0.473 -0.264             0.336
#> 24      -1.253 0.884       -0.928 0.473 -0.270             0.336
#> 25      -0.486 0.884       -0.928 0.473 -0.282             0.336
#> 26      -1.725 0.884       -0.928 0.473 -0.262             0.336
#> 27      -1.300 0.884       -0.928 0.473 -0.269             0.336
#> 28      -1.108 0.884       -0.928 0.473 -0.272             0.336
#> 29      -1.609 0.884       -0.928 0.473 -0.264             0.336
#> 30      -1.469 0.884       -0.928 0.473 -0.266             0.336
#> 31      -1.612 0.884       -0.928 0.473 -0.264             0.336
#> 32      -0.867 0.884       -0.928 0.473 -0.276             0.336
#> 33      -0.935 0.884       -0.928 0.473 -0.274             0.336
#> 34      -1.599 0.884       -0.928 0.473 -0.264             0.336
#> 35      -0.447 0.884       -0.928 0.473 -0.282             0.336
#> 36      -0.856 0.884       -0.928 0.473 -0.276             0.336
#> 37      -1.094 0.884       -0.928 0.473 -0.272             0.336
#> 38      -1.924 0.884       -0.928 0.473 -0.259             0.336
#> 39      -1.380 0.884       -0.928 0.473 -0.268             0.336
#> 40      -1.327 0.884       -0.928 0.473 -0.268             0.336
#> 41      -1.823 0.884       -0.928 0.473 -0.261             0.336
#> 42      -1.218 0.884       -0.928 0.473 -0.270             0.336
#> 43      -0.986 0.884       -0.928 0.473 -0.274             0.336
#> 44      -1.324 0.884       -0.928 0.473 -0.268             0.336
#> 45      -1.254 0.884       -0.928 0.473 -0.269             0.336
#> 46      -1.001 0.884       -0.928 0.473 -0.273             0.336
#> 47      -1.238 0.884       -0.928 0.473 -0.270             0.336
#> 48      -1.655 0.884       -0.928 0.473 -0.263             0.336
#> 49      -0.742 0.884       -0.928 0.473 -0.278             0.336
#> 50      -1.516 0.884       -0.928 0.473 -0.265             0.336
#> 51      -1.504 0.884       -0.928 0.473 -0.266             0.336
#> 52      -1.992 0.884       -0.928 0.473 -0.258             0.336
#> 53      -0.950 0.884       -0.928 0.473 -0.274             0.336
#> 54      -1.672 0.884       -0.928 0.473 -0.263             0.336
#> 55      -1.158 0.884       -0.928 0.473 -0.271             0.336
#> 56      -0.369 0.884       -0.928 0.473 -0.283             0.336
#> 57      -1.892 0.884       -0.928 0.473 -0.260             0.336
#> 58      -2.136 0.884       -0.928 0.473 -0.256             0.336
#> 59      -1.249 0.884       -0.928 0.473 -0.270             0.336
#> 
#> ---end{coef}--------------
#> 
#> confint:
#> -----
#>                                   2.5 %    97.5 % Estimate
#> (Intercept)                   -3.67e+00  1.02e+00  -1.3225
#> Base                           6.27e-01  1.14e+00   0.8843
#> trtprogabide                  -1.72e+00 -1.41e-01  -0.9284
#> Age                           -2.19e-01  1.16e+00   0.4727
#> Visit                         -6.08e-01  7.11e-02  -0.2684
#> Base:trtprogabide             -6.40e-02  7.37e-01   0.3363
#> Std.Dev.(Intercept)|subject    3.57e-01  6.08e-01   0.4660
#> Std.Dev.Visit|subject          2.93e-26  1.82e+21   0.0073
#> Cor.Visit.(Intercept)|subject -1.00e+00  1.00e+00  -0.9990
#> ---end{confint}--------------
#> 
#> deviance:
#> -----
#> [1] 226
#> ---end{deviance}--------------
#> 
#> df.residual:
#> -----
#> [1] 226
#> ---end{df.residual}--------------
#> 
#> emm_basis:
#> -----
#> ** Error: argument "trms" is missing, with no default 
#> ---end{emm_basis}--------------
#> 
#> extractAIC:
#> -----
#> [1]   10 1269
#> ---end{extractAIC}--------------
#> 
#> family:
#> -----
#> 
#> Family: nbinom2 
#> Link function: log 
#> 
#> ---end{family}--------------
#> 
#> fitted:
#> -----
#>   [1]  3.714  3.519  3.335  3.160  3.700  3.506  3.323  3.149  2.521  2.387
#>  [11]  2.260  2.140  3.294  3.120  2.956  2.800 15.013 14.227 13.483 12.778
#>  [21]  6.394  6.063  5.749  5.452  3.431  3.253  3.084  2.924 23.159 21.925
#>  [31] 20.756 19.650  6.324  5.997  5.686  5.392  6.970  6.590  6.230  5.889
#>  [41] 17.310 16.399 15.535 14.717  8.132  7.707  7.305  6.924  4.465  4.233
#>  [51]  4.012  3.803 11.691 11.082 10.505  9.958 16.622 15.764 14.950 14.178
#>  [61]  5.895  5.600  5.320  5.054  2.728  2.590  2.460  2.336 32.287 30.585
#>  [71] 28.972 27.445  4.495  4.263  4.043  3.834  4.567  4.329  4.104  3.891
#>  [81]  3.779  3.582  3.394  3.217  3.306  3.130  2.964  2.807  4.049  3.841
#>  [91]  3.643  3.456  7.926  7.510  7.116  6.743 33.920 32.063 30.307 28.648
#> [101]  2.259  2.144  2.034  1.930  2.670  2.531  2.398  2.273 13.640 12.918
#> [111] 12.235 11.588 12.209 11.581 10.986 10.421  7.911  7.501  7.112  6.744
#> [121]  2.356  2.235  2.120  2.011  2.756  2.608  2.468  2.336  4.422  4.186
#> [131]  3.962  3.751  3.458  3.280  3.111  2.951 16.712 15.795 14.929 14.110
#> [141]  4.519  4.276  4.047  3.830  2.344  2.220  2.102  1.991  8.014  7.609
#> [151]  7.225  6.860  7.955  7.541  7.148  6.775  1.086  1.030  0.976  0.925
#> [161]  2.434  2.310  2.193  2.081  3.055  2.894  2.742  2.598 16.475 15.597
#> [171] 14.766 13.980  7.022  6.655  6.307  5.978 10.243  9.705  9.196  8.714
#> [181]  1.429  1.353  1.281  1.213  8.470  8.025  7.604  7.204  1.286  1.220
#> [191]  1.158  1.098 74.106 70.105 66.320 62.740  3.872  3.672  3.482  3.302
#> [201]  7.460  7.074  6.708  6.361  3.959  3.760  3.571  3.391 17.542 16.606
#> [211] 15.720 14.881  4.139  3.927  3.726  3.535  3.762  3.564  3.376  3.197
#> [221] 11.118 10.506  9.927  9.380  2.544  2.415  2.293  2.177  1.155  1.098
#> [231]  1.043  0.991  2.589  2.453  2.325  2.203
#> ---end{fitted}--------------
#> 
#> fixef:
#> -----
#> 
#> Conditional model:
#>       (Intercept)               Base       trtprogabide                Age  
#>            -1.322              0.884             -0.928              0.473  
#>             Visit  Base:trtprogabide  
#>            -0.268              0.336  
#> ---end{fixef}--------------
#> 
#> formula:
#> -----
#> y ~ Base * trt + Age + Visit + (Visit | subject)
#> <environment: 0x7fa874e3ac80>
#> ---end{formula}--------------
#> 
#> logLik:
#> -----
#> 'log Lik.' -625 (df=10)
#> ---end{logLik}--------------
#> 
#> model.frame:
#> -----
#>       y  Base       trt  Age Visit subject
#> 1     5 1.012   placebo 3.43  -0.3       1
#> 2     3 1.012   placebo 3.43  -0.1       1
#> 3     3 1.012   placebo 3.43   0.1       1
#> 4     3 1.012   placebo 3.43   0.3       1
#> 5     3 1.012   placebo 3.40  -0.3       2
#> 6     5 1.012   placebo 3.40  -0.1       2
#> 7     3 1.012   placebo 3.40   0.1       2
#> 8     3 1.012   placebo 3.40   0.3       2
#> 9     2 0.405   placebo 3.22  -0.3       3
#> 10    4 0.405   placebo 3.22  -0.1       3
#> 11    0 0.405   placebo 3.22   0.1       3
#> 12    5 0.405   placebo 3.22   0.3       3
#> 13    4 0.693   placebo 3.58  -0.3       4
#> 14    4 0.693   placebo 3.58  -0.1       4
#> 15    1 0.693   placebo 3.58   0.1       4
#> 16    4 0.693   placebo 3.58   0.3       4
#> 17    7 2.803   placebo 3.09  -0.3       5
#> 18   18 2.803   placebo 3.09  -0.1       5
#> 19    9 2.803   placebo 3.09   0.1       5
#> 20   21 2.803   placebo 3.09   0.3       5
#> 21    5 1.910   placebo 3.37  -0.3       6
#> 22    2 1.910   placebo 3.37  -0.1       6
#> 23    8 1.910   placebo 3.37   0.1       6
#> 24    7 1.910   placebo 3.37   0.3       6
#> 25    6 1.099   placebo 3.43  -0.3       7
#> 26    4 1.099   placebo 3.43  -0.1       7
#> 27    0 1.099   placebo 3.43   0.1       7
#> 28    2 1.099   placebo 3.43   0.3       7
#> 29   40 2.565   placebo 3.74  -0.3       8
#> 30   20 2.565   placebo 3.74  -0.1       8
#> 31   21 2.565   placebo 3.74   0.1       8
#> 32   12 2.565   placebo 3.74   0.3       8
#> 33    5 1.749   placebo 3.61  -0.3       9
#> 34    6 1.749   placebo 3.61  -0.1       9
#> 35    6 1.749   placebo 3.61   0.1       9
#> 36    5 1.749   placebo 3.61   0.3       9
#> 37   14 0.916   placebo 3.33  -0.3      10
#> 38   13 0.916   placebo 3.33  -0.1      10
#> 39    6 0.916   placebo 3.33   0.1      10
#> 40    0 0.916   placebo 3.33   0.3      10
#> 41   26 2.565   placebo 3.58  -0.3      11
#> 42   12 2.565   placebo 3.58  -0.1      11
#> 43    6 2.565   placebo 3.58   0.1      11
#> 44   22 2.565   placebo 3.58   0.3      11
#> 45   12 2.110   placebo 3.18  -0.3      12
#> 46    6 2.110   placebo 3.18  -0.1      12
#> 47    8 2.110   placebo 3.18   0.1      12
#> 48    4 2.110   placebo 3.18   0.3      12
#> 49    4 1.504   placebo 3.14  -0.3      13
#> 50    4 1.504   placebo 3.14  -0.1      13
#> 51    6 1.504   placebo 3.14   0.1      13
#> 52    2 1.504   placebo 3.14   0.3      13
#> 53    7 2.351   placebo 3.58  -0.3      14
#> 54    9 2.351   placebo 3.58  -0.1      14
#> 55   12 2.351   placebo 3.58   0.1      14
#> 56   14 2.351   placebo 3.58   0.3      14
#> 57   16 3.080   placebo 3.26  -0.3      15
#> 58   24 3.080   placebo 3.26  -0.1      15
#> 59   10 3.080   placebo 3.26   0.1      15
#> 60    9 3.080   placebo 3.26   0.3      15
#> 61   11 2.526   placebo 3.26  -0.3      16
#> 62    0 2.526   placebo 3.26  -0.1      16
#> 63    0 2.526   placebo 3.26   0.1      16
#> 64    5 2.526   placebo 3.26   0.3      16
#> 65    0 1.504   placebo 3.33  -0.3      17
#> 66    0 1.504   placebo 3.33  -0.1      17
#> 67    3 1.504   placebo 3.33   0.1      17
#> 68    3 1.504   placebo 3.33   0.3      17
#> 69   37 3.323   placebo 3.43  -0.3      18
#> 70   29 3.323   placebo 3.43  -0.1      18
#> 71   28 3.323   placebo 3.43   0.1      18
#> 72   29 3.323   placebo 3.43   0.3      18
#> 73    3 1.504   placebo 3.47  -0.3      19
#> 74    5 1.504   placebo 3.47  -0.1      19
#> 75    2 1.504   placebo 3.47   0.1      19
#> 76    5 1.504   placebo 3.47   0.3      19
#> 77    3 1.609   placebo 3.04  -0.3      20
#> 78    0 1.609   placebo 3.04  -0.1      20
#> 79    6 1.609   placebo 3.04   0.1      20
#> 80    7 1.609   placebo 3.04   0.3      20
#> 81    3 1.099   placebo 3.37  -0.3      21
#> 82    4 1.099   placebo 3.37  -0.1      21
#> 83    3 1.099   placebo 3.37   0.1      21
#> 84    4 1.099   placebo 3.37   0.3      21
#> 85    3 0.811   placebo 3.04  -0.3      22
#> 86    4 0.811   placebo 3.04  -0.1      22
#> 87    3 0.811   placebo 3.04   0.1      22
#> 88    4 0.811   placebo 3.04   0.3      22
#> 89    2 1.447   placebo 3.47  -0.3      23
#> 90    3 1.447   placebo 3.47  -0.1      23
#> 91    3 1.447   placebo 3.47   0.1      23
#> 92    5 1.447   placebo 3.47   0.3      23
#> 93    8 1.946   placebo 3.22  -0.3      24
#> 94   12 1.946   placebo 3.22  -0.1      24
#> 95    2 1.946   placebo 3.22   0.1      24
#> 96    8 1.946   placebo 3.22   0.3      24
#> 97   18 2.621   placebo 3.40  -0.3      25
#> 98   24 2.621   placebo 3.40  -0.1      25
#> 99   76 2.621   placebo 3.40   0.1      25
#> 100  25 2.621   placebo 3.40   0.3      25
#> 101   2 0.811   placebo 3.69  -0.3      26
#> 102   1 0.811   placebo 3.69  -0.1      26
#> 103   2 0.811   placebo 3.69   0.1      26
#> 104   1 0.811   placebo 3.69   0.3      26
#> 105   3 0.916   placebo 2.94  -0.3      27
#> 106   1 0.916   placebo 2.94  -0.1      27
#> 107   4 0.916   placebo 2.94   0.1      27
#> 108   2 0.916   placebo 2.94   0.3      27
#> 109  13 2.464   placebo 3.09  -0.3      28
#> 110  15 2.464   placebo 3.09  -0.1      28
#> 111  13 2.464   placebo 3.09   0.1      28
#> 112  12 2.464   placebo 3.09   0.3      28
#> 113  11 2.944 progabide 2.89  -0.3      29
#> 114  14 2.944 progabide 2.89  -0.1      29
#> 115   9 2.944 progabide 2.89   0.1      29
#> 116   8 2.944 progabide 2.89   0.3      29
#> 117   8 2.251 progabide 3.47  -0.3      30
#> 118   7 2.251 progabide 3.47  -0.1      30
#> 119   9 2.251 progabide 3.47   0.1      30
#> 120   4 2.251 progabide 3.47   0.3      30
#> 121   0 1.558 progabide 3.00  -0.3      31
#> 122   4 1.558 progabide 3.00  -0.1      31
#> 123   3 1.558 progabide 3.00   0.1      31
#> 124   0 1.558 progabide 3.00   0.3      31
#> 125   3 0.916 progabide 3.40  -0.3      32
#> 126   6 0.916 progabide 3.40  -0.1      32
#> 127   1 0.916 progabide 3.40   0.1      32
#> 128   3 0.916 progabide 3.40   0.3      32
#> 129   2 1.558 progabide 2.89  -0.3      33
#> 130   6 1.558 progabide 2.89  -0.1      33
#> 131   7 1.558 progabide 2.89   0.1      33
#> 132   4 1.558 progabide 2.89   0.3      33
#> 133   4 1.792 progabide 3.18  -0.3      34
#> 134   3 1.792 progabide 3.18  -0.1      34
#> 135   1 1.792 progabide 3.18   0.1      34
#> 136   3 1.792 progabide 3.18   0.3      34
#> 137  22 2.048 progabide 3.40  -0.3      35
#> 138  17 2.048 progabide 3.40  -0.1      35
#> 139  19 2.048 progabide 3.40   0.1      35
#> 140  16 2.048 progabide 3.40   0.3      35
#> 141   5 1.253 progabide 3.56  -0.3      36
#> 142   4 1.253 progabide 3.56  -0.1      36
#> 143   7 1.253 progabide 3.56   0.1      36
#> 144   4 1.253 progabide 3.56   0.3      36
#> 145   2 1.012 progabide 3.30  -0.3      37
#> 146   4 1.012 progabide 3.30  -0.1      37
#> 147   0 1.012 progabide 3.30   0.1      37
#> 148   4 1.012 progabide 3.30   0.3      37
#> 149   3 2.818 progabide 3.00  -0.3      38
#> 150   7 2.818 progabide 3.00  -0.1      38
#> 151   7 2.818 progabide 3.00   0.1      38
#> 152   7 2.818 progabide 3.00   0.3      38
#> 153   4 2.327 progabide 3.09  -0.3      39
#> 154  18 2.327 progabide 3.09  -0.1      39
#> 155   2 2.327 progabide 3.09   0.1      39
#> 156   5 2.327 progabide 3.09   0.3      39
#> 157   2 0.560 progabide 3.33  -0.3      40
#> 158   1 0.560 progabide 3.33  -0.1      40
#> 159   1 0.560 progabide 3.33   0.1      40
#> 160   0 0.560 progabide 3.33   0.3      40
#> 161   0 1.705 progabide 3.14  -0.3      41
#> 162   2 1.705 progabide 3.14  -0.1      41
#> 163   4 1.705 progabide 3.14   0.1      41
#> 164   0 1.705 progabide 3.14   0.3      41
#> 165   5 1.179 progabide 3.69  -0.3      42
#> 166   4 1.179 progabide 3.69  -0.1      42
#> 167   0 1.179 progabide 3.69   0.1      42
#> 168   3 1.179 progabide 3.69   0.3      42
#> 169  11 2.442 progabide 3.50  -0.3      43
#> 170  14 2.442 progabide 3.50  -0.1      43
#> 171  25 2.442 progabide 3.50   0.1      43
#> 172  15 2.442 progabide 3.50   0.3      43
#> 173  10 2.197 progabide 3.04  -0.3      44
#> 174   5 2.197 progabide 3.04  -0.1      44
#> 175   3 2.197 progabide 3.04   0.1      44
#> 176   8 2.197 progabide 3.04   0.3      44
#> 177  19 2.251 progabide 3.56  -0.3      45
#> 178   7 2.251 progabide 3.56  -0.1      45
#> 179   6 2.251 progabide 3.56   0.1      45
#> 180   7 2.251 progabide 3.56   0.3      45
#> 181   1 0.560 progabide 3.22  -0.3      46
#> 182   1 0.560 progabide 3.22  -0.1      46
#> 183   2 0.560 progabide 3.22   0.1      46
#> 184   3 0.560 progabide 3.22   0.3      46
#> 185   6 2.197 progabide 3.26  -0.3      47
#> 186  10 2.197 progabide 3.26  -0.1      47
#> 187   8 2.197 progabide 3.26   0.1      47
#> 188   8 2.197 progabide 3.26   0.3      47
#> 189   2 1.012 progabide 3.22  -0.3      48
#> 190   1 1.012 progabide 3.22  -0.1      48
#> 191   0 1.012 progabide 3.22   0.1      48
#> 192   0 1.012 progabide 3.22   0.3      48
#> 193 102 3.631 progabide 3.09  -0.3      49
#> 194  65 3.631 progabide 3.09  -0.1      49
#> 195  72 3.631 progabide 3.09   0.1      49
#> 196  63 3.631 progabide 3.09   0.3      49
#> 197   4 1.705 progabide 3.47  -0.3      50
#> 198   3 1.705 progabide 3.47  -0.1      50
#> 199   2 1.705 progabide 3.47   0.1      50
#> 200   4 1.705 progabide 3.47   0.3      50
#> 201   8 2.327 progabide 3.22  -0.3      51
#> 202   6 2.327 progabide 3.22  -0.1      51
#> 203   5 2.327 progabide 3.22   0.1      51
#> 204   7 2.327 progabide 3.22   0.3      51
#> 205   1 2.079 progabide 3.56  -0.3      52
#> 206   3 2.079 progabide 3.56  -0.1      52
#> 207   1 2.079 progabide 3.56   0.1      52
#> 208   5 2.079 progabide 3.56   0.3      52
#> 209  18 2.639 progabide 3.04  -0.3      53
#> 210  11 2.639 progabide 3.04  -0.1      53
#> 211  28 2.639 progabide 3.04   0.1      53
#> 212  13 2.639 progabide 3.04   0.3      53
#> 213   6 1.792 progabide 3.71  -0.3      54
#> 214   3 1.792 progabide 3.71  -0.1      54
#> 215   4 1.792 progabide 3.71   0.1      54
#> 216   0 1.792 progabide 3.71   0.3      54
#> 217   3 1.386 progabide 3.47  -0.3      55
#> 218   5 1.386 progabide 3.47  -0.1      55
#> 219   4 1.386 progabide 3.47   0.1      55
#> 220   3 1.386 progabide 3.47   0.3      55
#> 221   1 1.705 progabide 3.26  -0.3      56
#> 222  23 1.705 progabide 3.26  -0.1      56
#> 223  19 1.705 progabide 3.26   0.1      56
#> 224   8 1.705 progabide 3.26   0.3      56
#> 225   2 1.833 progabide 3.04  -0.3      57
#> 226   3 1.833 progabide 3.04  -0.1      57
#> 227   0 1.833 progabide 3.04   0.1      57
#> 228   1 1.833 progabide 3.04   0.3      57
#> 229   0 1.179 progabide 3.58  -0.3      58
#> 230   0 1.179 progabide 3.58  -0.1      58
#> 231   0 1.179 progabide 3.58   0.1      58
#> 232   0 1.179 progabide 3.58   0.3      58
#> 233   1 1.099 progabide 3.61  -0.3      59
#> 234   4 1.099 progabide 3.61  -0.1      59
#> 235   3 1.099 progabide 3.61   0.1      59
#> 236   2 1.099 progabide 3.61   0.3      59
#> ---end{model.frame}--------------
#> 
#> model.matrix:
#> -----
#>     (Intercept)  Base trtprogabide  Age Visit Base:trtprogabide
#> 1             1 1.012            0 3.43  -0.3             0.000
#> 2             1 1.012            0 3.43  -0.1             0.000
#> 3             1 1.012            0 3.43   0.1             0.000
#> 4             1 1.012            0 3.43   0.3             0.000
#> 5             1 1.012            0 3.40  -0.3             0.000
#> 6             1 1.012            0 3.40  -0.1             0.000
#> 7             1 1.012            0 3.40   0.1             0.000
#> 8             1 1.012            0 3.40   0.3             0.000
#> 9             1 0.405            0 3.22  -0.3             0.000
#> 10            1 0.405            0 3.22  -0.1             0.000
#> 11            1 0.405            0 3.22   0.1             0.000
#> 12            1 0.405            0 3.22   0.3             0.000
#> 13            1 0.693            0 3.58  -0.3             0.000
#> 14            1 0.693            0 3.58  -0.1             0.000
#> 15            1 0.693            0 3.58   0.1             0.000
#> 16            1 0.693            0 3.58   0.3             0.000
#> 17            1 2.803            0 3.09  -0.3             0.000
#> 18            1 2.803            0 3.09  -0.1             0.000
#> 19            1 2.803            0 3.09   0.1             0.000
#> 20            1 2.803            0 3.09   0.3             0.000
#> 21            1 1.910            0 3.37  -0.3             0.000
#> 22            1 1.910            0 3.37  -0.1             0.000
#> 23            1 1.910            0 3.37   0.1             0.000
#> 24            1 1.910            0 3.37   0.3             0.000
#> 25            1 1.099            0 3.43  -0.3             0.000
#> 26            1 1.099            0 3.43  -0.1             0.000
#> 27            1 1.099            0 3.43   0.1             0.000
#> 28            1 1.099            0 3.43   0.3             0.000
#> 29            1 2.565            0 3.74  -0.3             0.000
#> 30            1 2.565            0 3.74  -0.1             0.000
#> 31            1 2.565            0 3.74   0.1             0.000
#> 32            1 2.565            0 3.74   0.3             0.000
#> 33            1 1.749            0 3.61  -0.3             0.000
#> 34            1 1.749            0 3.61  -0.1             0.000
#> 35            1 1.749            0 3.61   0.1             0.000
#> 36            1 1.749            0 3.61   0.3             0.000
#> 37            1 0.916            0 3.33  -0.3             0.000
#> 38            1 0.916            0 3.33  -0.1             0.000
#> 39            1 0.916            0 3.33   0.1             0.000
#> 40            1 0.916            0 3.33   0.3             0.000
#> 41            1 2.565            0 3.58  -0.3             0.000
#> 42            1 2.565            0 3.58  -0.1             0.000
#> 43            1 2.565            0 3.58   0.1             0.000
#> 44            1 2.565            0 3.58   0.3             0.000
#> 45            1 2.110            0 3.18  -0.3             0.000
#> 46            1 2.110            0 3.18  -0.1             0.000
#> 47            1 2.110            0 3.18   0.1             0.000
#> 48            1 2.110            0 3.18   0.3             0.000
#> 49            1 1.504            0 3.14  -0.3             0.000
#> 50            1 1.504            0 3.14  -0.1             0.000
#> 51            1 1.504            0 3.14   0.1             0.000
#> 52            1 1.504            0 3.14   0.3             0.000
#> 53            1 2.351            0 3.58  -0.3             0.000
#> 54            1 2.351            0 3.58  -0.1             0.000
#> 55            1 2.351            0 3.58   0.1             0.000
#> 56            1 2.351            0 3.58   0.3             0.000
#> 57            1 3.080            0 3.26  -0.3             0.000
#> 58            1 3.080            0 3.26  -0.1             0.000
#> 59            1 3.080            0 3.26   0.1             0.000
#> 60            1 3.080            0 3.26   0.3             0.000
#> 61            1 2.526            0 3.26  -0.3             0.000
#> 62            1 2.526            0 3.26  -0.1             0.000
#> 63            1 2.526            0 3.26   0.1             0.000
#> 64            1 2.526            0 3.26   0.3             0.000
#> 65            1 1.504            0 3.33  -0.3             0.000
#> 66            1 1.504            0 3.33  -0.1             0.000
#> 67            1 1.504            0 3.33   0.1             0.000
#> 68            1 1.504            0 3.33   0.3             0.000
#> 69            1 3.323            0 3.43  -0.3             0.000
#> 70            1 3.323            0 3.43  -0.1             0.000
#> 71            1 3.323            0 3.43   0.1             0.000
#> 72            1 3.323            0 3.43   0.3             0.000
#> 73            1 1.504            0 3.47  -0.3             0.000
#> 74            1 1.504            0 3.47  -0.1             0.000
#> 75            1 1.504            0 3.47   0.1             0.000
#> 76            1 1.504            0 3.47   0.3             0.000
#> 77            1 1.609            0 3.04  -0.3             0.000
#> 78            1 1.609            0 3.04  -0.1             0.000
#> 79            1 1.609            0 3.04   0.1             0.000
#> 80            1 1.609            0 3.04   0.3             0.000
#> 81            1 1.099            0 3.37  -0.3             0.000
#> 82            1 1.099            0 3.37  -0.1             0.000
#> 83            1 1.099            0 3.37   0.1             0.000
#> 84            1 1.099            0 3.37   0.3             0.000
#> 85            1 0.811            0 3.04  -0.3             0.000
#> 86            1 0.811            0 3.04  -0.1             0.000
#> 87            1 0.811            0 3.04   0.1             0.000
#> 88            1 0.811            0 3.04   0.3             0.000
#> 89            1 1.447            0 3.47  -0.3             0.000
#> 90            1 1.447            0 3.47  -0.1             0.000
#> 91            1 1.447            0 3.47   0.1             0.000
#> 92            1 1.447            0 3.47   0.3             0.000
#> 93            1 1.946            0 3.22  -0.3             0.000
#> 94            1 1.946            0 3.22  -0.1             0.000
#> 95            1 1.946            0 3.22   0.1             0.000
#> 96            1 1.946            0 3.22   0.3             0.000
#> 97            1 2.621            0 3.40  -0.3             0.000
#> 98            1 2.621            0 3.40  -0.1             0.000
#> 99            1 2.621            0 3.40   0.1             0.000
#> 100           1 2.621            0 3.40   0.3             0.000
#> 101           1 0.811            0 3.69  -0.3             0.000
#> 102           1 0.811            0 3.69  -0.1             0.000
#> 103           1 0.811            0 3.69   0.1             0.000
#> 104           1 0.811            0 3.69   0.3             0.000
#> 105           1 0.916            0 2.94  -0.3             0.000
#> 106           1 0.916            0 2.94  -0.1             0.000
#> 107           1 0.916            0 2.94   0.1             0.000
#> 108           1 0.916            0 2.94   0.3             0.000
#> 109           1 2.464            0 3.09  -0.3             0.000
#> 110           1 2.464            0 3.09  -0.1             0.000
#> 111           1 2.464            0 3.09   0.1             0.000
#> 112           1 2.464            0 3.09   0.3             0.000
#> 113           1 2.944            1 2.89  -0.3             2.944
#> 114           1 2.944            1 2.89  -0.1             2.944
#> 115           1 2.944            1 2.89   0.1             2.944
#> 116           1 2.944            1 2.89   0.3             2.944
#> 117           1 2.251            1 3.47  -0.3             2.251
#> 118           1 2.251            1 3.47  -0.1             2.251
#> 119           1 2.251            1 3.47   0.1             2.251
#> 120           1 2.251            1 3.47   0.3             2.251
#> 121           1 1.558            1 3.00  -0.3             1.558
#> 122           1 1.558            1 3.00  -0.1             1.558
#> 123           1 1.558            1 3.00   0.1             1.558
#> 124           1 1.558            1 3.00   0.3             1.558
#> 125           1 0.916            1 3.40  -0.3             0.916
#> 126           1 0.916            1 3.40  -0.1             0.916
#> 127           1 0.916            1 3.40   0.1             0.916
#> 128           1 0.916            1 3.40   0.3             0.916
#> 129           1 1.558            1 2.89  -0.3             1.558
#> 130           1 1.558            1 2.89  -0.1             1.558
#> 131           1 1.558            1 2.89   0.1             1.558
#> 132           1 1.558            1 2.89   0.3             1.558
#> 133           1 1.792            1 3.18  -0.3             1.792
#> 134           1 1.792            1 3.18  -0.1             1.792
#> 135           1 1.792            1 3.18   0.1             1.792
#> 136           1 1.792            1 3.18   0.3             1.792
#> 137           1 2.048            1 3.40  -0.3             2.048
#> 138           1 2.048            1 3.40  -0.1             2.048
#> 139           1 2.048            1 3.40   0.1             2.048
#> 140           1 2.048            1 3.40   0.3             2.048
#> 141           1 1.253            1 3.56  -0.3             1.253
#> 142           1 1.253            1 3.56  -0.1             1.253
#> 143           1 1.253            1 3.56   0.1             1.253
#> 144           1 1.253            1 3.56   0.3             1.253
#> 145           1 1.012            1 3.30  -0.3             1.012
#> 146           1 1.012            1 3.30  -0.1             1.012
#> 147           1 1.012            1 3.30   0.1             1.012
#> 148           1 1.012            1 3.30   0.3             1.012
#> 149           1 2.818            1 3.00  -0.3             2.818
#> 150           1 2.818            1 3.00  -0.1             2.818
#> 151           1 2.818            1 3.00   0.1             2.818
#> 152           1 2.818            1 3.00   0.3             2.818
#> 153           1 2.327            1 3.09  -0.3             2.327
#> 154           1 2.327            1 3.09  -0.1             2.327
#> 155           1 2.327            1 3.09   0.1             2.327
#> 156           1 2.327            1 3.09   0.3             2.327
#> 157           1 0.560            1 3.33  -0.3             0.560
#> 158           1 0.560            1 3.33  -0.1             0.560
#> 159           1 0.560            1 3.33   0.1             0.560
#> 160           1 0.560            1 3.33   0.3             0.560
#> 161           1 1.705            1 3.14  -0.3             1.705
#> 162           1 1.705            1 3.14  -0.1             1.705
#> 163           1 1.705            1 3.14   0.1             1.705
#> 164           1 1.705            1 3.14   0.3             1.705
#> 165           1 1.179            1 3.69  -0.3             1.179
#> 166           1 1.179            1 3.69  -0.1             1.179
#> 167           1 1.179            1 3.69   0.1             1.179
#> 168           1 1.179            1 3.69   0.3             1.179
#> 169           1 2.442            1 3.50  -0.3             2.442
#> 170           1 2.442            1 3.50  -0.1             2.442
#> 171           1 2.442            1 3.50   0.1             2.442
#> 172           1 2.442            1 3.50   0.3             2.442
#> 173           1 2.197            1 3.04  -0.3             2.197
#> 174           1 2.197            1 3.04  -0.1             2.197
#> 175           1 2.197            1 3.04   0.1             2.197
#> 176           1 2.197            1 3.04   0.3             2.197
#> 177           1 2.251            1 3.56  -0.3             2.251
#> 178           1 2.251            1 3.56  -0.1             2.251
#> 179           1 2.251            1 3.56   0.1             2.251
#> 180           1 2.251            1 3.56   0.3             2.251
#> 181           1 0.560            1 3.22  -0.3             0.560
#> 182           1 0.560            1 3.22  -0.1             0.560
#> 183           1 0.560            1 3.22   0.1             0.560
#> 184           1 0.560            1 3.22   0.3             0.560
#> 185           1 2.197            1 3.26  -0.3             2.197
#> 186           1 2.197            1 3.26  -0.1             2.197
#> 187           1 2.197            1 3.26   0.1             2.197
#> 188           1 2.197            1 3.26   0.3             2.197
#> 189           1 1.012            1 3.22  -0.3             1.012
#> 190           1 1.012            1 3.22  -0.1             1.012
#> 191           1 1.012            1 3.22   0.1             1.012
#> 192           1 1.012            1 3.22   0.3             1.012
#> 193           1 3.631            1 3.09  -0.3             3.631
#> 194           1 3.631            1 3.09  -0.1             3.631
#> 195           1 3.631            1 3.09   0.1             3.631
#> 196           1 3.631            1 3.09   0.3             3.631
#> 197           1 1.705            1 3.47  -0.3             1.705
#> 198           1 1.705            1 3.47  -0.1             1.705
#> 199           1 1.705            1 3.47   0.1             1.705
#> 200           1 1.705            1 3.47   0.3             1.705
#> 201           1 2.327            1 3.22  -0.3             2.327
#> 202           1 2.327            1 3.22  -0.1             2.327
#> 203           1 2.327            1 3.22   0.1             2.327
#> 204           1 2.327            1 3.22   0.3             2.327
#> 205           1 2.079            1 3.56  -0.3             2.079
#> 206           1 2.079            1 3.56  -0.1             2.079
#> 207           1 2.079            1 3.56   0.1             2.079
#> 208           1 2.079            1 3.56   0.3             2.079
#> 209           1 2.639            1 3.04  -0.3             2.639
#> 210           1 2.639            1 3.04  -0.1             2.639
#> 211           1 2.639            1 3.04   0.1             2.639
#> 212           1 2.639            1 3.04   0.3             2.639
#> 213           1 1.792            1 3.71  -0.3             1.792
#> 214           1 1.792            1 3.71  -0.1             1.792
#> 215           1 1.792            1 3.71   0.1             1.792
#> 216           1 1.792            1 3.71   0.3             1.792
#> 217           1 1.386            1 3.47  -0.3             1.386
#> 218           1 1.386            1 3.47  -0.1             1.386
#> 219           1 1.386            1 3.47   0.1             1.386
#> 220           1 1.386            1 3.47   0.3             1.386
#> 221           1 1.705            1 3.26  -0.3             1.705
#> 222           1 1.705            1 3.26  -0.1             1.705
#> 223           1 1.705            1 3.26   0.1             1.705
#> 224           1 1.705            1 3.26   0.3             1.705
#> 225           1 1.833            1 3.04  -0.3             1.833
#> 226           1 1.833            1 3.04  -0.1             1.833
#> 227           1 1.833            1 3.04   0.1             1.833
#> 228           1 1.833            1 3.04   0.3             1.833
#> 229           1 1.179            1 3.58  -0.3             1.179
#> 230           1 1.179            1 3.58  -0.1             1.179
#> 231           1 1.179            1 3.58   0.1             1.179
#> 232           1 1.179            1 3.58   0.3             1.179
#> 233           1 1.099            1 3.61  -0.3             1.099
#> 234           1 1.099            1 3.61  -0.1             1.099
#> 235           1 1.099            1 3.61   0.1             1.099
#> 236           1 1.099            1 3.61   0.3             1.099
#> attr(,"assign")
#> [1] 0 1 2 3 4 5
#> attr(,"contrasts")
#> attr(,"contrasts")$trt
#> [1] "contr.treatment"
#> 
#> ---end{model.matrix}--------------
#> 
#> nobs:
#> -----
#> [1] 236
#> ---end{nobs}--------------
#> 
#> predict:
#> -----
#>   [1]  1.31207  1.25827  1.20447  1.15067  1.30843  1.25460  1.20076  1.14693
#>   [9]  0.92459  0.87001  0.81543  0.76086  1.19203  1.13795  1.08387  1.02979
#>  [17]  2.70889  2.65518  2.60146  2.54774  1.85528  1.80217  1.74905  1.69594
#>  [25]  1.23282  1.17951  1.12620  1.07289  3.14240  3.08762  3.03285  2.97808
#>  [33]  1.84439  1.79123  1.73807  1.68490  1.94168  1.88551  1.82934  1.77317
#>  [41]  2.85130  2.79721  2.74312  2.68902  2.09575  2.04216  1.98857  1.93498
#>  [49]  1.49626  1.44280  1.38935  1.33589  2.45879  2.40533  2.35187  2.29841
#>  [57]  2.81074  2.75772  2.70469  2.65166  1.77418  1.72286  1.67153  1.62021
#>  [65]  1.00346  0.95183  0.90020  0.84858  3.47468  3.42051  3.36635  3.31218
#>  [73]  1.50295  1.44996  1.39697  1.34399  1.51880  1.46543  1.41206  1.35870
#>  [81]  1.32950  1.27579  1.22208  1.16837  1.19565  1.14109  1.08653  1.03197
#>  [89]  1.39848  1.34566  1.29284  1.24002  2.07015  2.01625  1.96235  1.90845
#>  [97]  3.52400  3.46770  3.41139  3.35509  0.81490  0.76248  0.71005  0.65763
#> [105]  0.98224  0.92848  0.87473  0.82098  2.61300  2.55865  2.50429  2.44994
#> [113]  2.50217  2.44939  2.39660  2.34381  2.06826  2.01504  1.96181  1.90859
#> [121]  0.85706  0.80429  0.75151  0.69873  1.01366  0.95855  0.90344  0.84833
#> [129]  1.48659  1.43169  1.37680  1.32190  1.24066  1.18784  1.13502  1.08221
#> [137]  2.81614  2.75972  2.70330  2.64687  1.50820  1.45305  1.39791  1.34276
#> [145]  0.85183  0.79743  0.74303  0.68863  2.08113  2.02933  1.97753  1.92573
#> [153]  2.07380  2.02030  1.96679  1.91329  0.08291  0.02924 -0.02443 -0.07810
#> [161]  0.88944  0.83732  0.78520  0.73309  1.11668  1.06267  1.00866  0.95465
#> [169]  2.80182  2.74708  2.69234  2.63760  1.94909  1.89541  1.84174  1.78806
#> [177]  2.32659  2.27269  2.21879  2.16490  0.35727  0.30258  0.24789  0.19320
#> [185]  2.13655  2.08260  2.02865  1.97470  0.25178  0.19914  0.14650  0.09385
#> [193]  4.30550  4.25000  4.19450  4.13899  1.35376  1.30068  1.24761  1.19453
#> [201]  2.00955  1.95643  1.90332  1.85020  1.37589  1.32430  1.27271  1.22113
#> [209]  2.86462  2.80977  2.75492  2.70006  1.42055  1.36796  1.31537  1.26278
#> [217]  1.32496  1.27077  1.21657  1.16237  2.40861  2.35194  2.29527  2.23860
#> [225]  0.93354  0.88164  0.82974  0.77784  0.14448  0.09334  0.04220 -0.00893
#> [233]  0.95138  0.89747  0.84355  0.78964
#> ---end{predict}--------------
#> 
#> print:
#> -----
#> Formula:          y ~ Base * trt + Age + Visit + (Visit | subject)
#> Data: epil2
#>      AIC      BIC   logLik df.resid 
#>     1269     1304     -625      226 
#> Random-effects (co)variances:
#> 
#> Conditional model:
#>  Groups  Name        Std.Dev. Corr  
#>  subject (Intercept) 0.4660         
#>          Visit       0.0073   -1.00 
#> 
#> Number of obs: 236 / Conditional model: subject, 59
#> 
#> Dispersion parameter for nbinom2 family (): 7.46 
#> 
#> Fixed Effects:
#> 
#> Conditional model:
#>       (Intercept)               Base       trtprogabide                Age  
#>            -1.322              0.884             -0.928              0.473  
#>             Visit  Base:trtprogabide  
#>            -0.268              0.336  
#> Formula:          y ~ Base * trt + Age + Visit + (Visit | subject)
#> Data: epil2
#>      AIC      BIC   logLik df.resid 
#>     1269     1304     -625      226 
#> Random-effects (co)variances:
#> 
#> Conditional model:
#>  Groups  Name        Std.Dev. Corr  
#>  subject (Intercept) 0.4660         
#>          Visit       0.0073   -1.00 
#> 
#> Number of obs: 236 / Conditional model: subject, 59
#> 
#> Dispersion parameter for nbinom2 family (): 7.46 
#> 
#> Fixed Effects:
#> 
#> Conditional model:
#>       (Intercept)               Base       trtprogabide                Age  
#>            -1.322              0.884             -0.928              0.473  
#>             Visit  Base:trtprogabide  
#>            -0.268              0.336  
#> ---end{print}--------------
#> 
#> ranef:
#> -----
#> $subject
#>    (Intercept)     Visit
#> 1      0.03606 -5.64e-04
#> 2      0.04787 -7.49e-04
#> 3      0.28508 -4.46e-03
#> 4      0.12652 -1.98e-03
#> 5      0.01070 -1.67e-04
#> 6     -0.18220  2.85e-03
#> 7     -0.11940  1.87e-03
#> 8      0.34778 -5.44e-03
#> 9     -0.16654  2.61e-03
#> 10     0.79451 -1.24e-02
#> 11     0.13058 -2.04e-03
#> 12    -0.03044  4.76e-04
#> 13    -0.07363  1.15e-03
#> 14    -0.07212  1.13e-03
#> 15    -0.20966  3.28e-03
#> 16    -0.75388  1.18e-02
#> 17    -0.65667  1.03e-02
#> 18     0.15399 -2.41e-03
#> 19    -0.22234  3.48e-03
#> 20    -0.10112  1.58e-03
#> 21     0.00820 -1.28e-04
#> 22     0.28005 -4.38e-03
#> 23    -0.27601  4.32e-03
#> 24     0.06948 -1.09e-03
#> 25     0.83654 -1.31e-02
#> 26    -0.40209  6.29e-03
#> 27     0.02199 -3.44e-04
#> 28     0.21407 -3.35e-03
#> 29    -0.28630  4.48e-03
#> 30    -0.14681  2.30e-03
#> 31    -0.28914  4.53e-03
#> 32     0.45572 -7.13e-03
#> 33     0.38701 -6.06e-03
#> 34    -0.27693  4.33e-03
#> 35     0.87528 -1.37e-02
#> 36     0.46665 -7.30e-03
#> 37     0.22843 -3.58e-03
#> 38    -0.60183  9.42e-03
#> 39    -0.05732  8.97e-04
#> 40    -0.00491  7.69e-05
#> 41    -0.50078  7.84e-03
#> 42     0.10417 -1.63e-03
#> 43     0.33673 -5.27e-03
#> 44    -0.00157  2.45e-05
#> 45     0.06814 -1.07e-03
#> 46     0.32149 -5.03e-03
#> 47     0.08453 -1.32e-03
#> 48    -0.33261  5.21e-03
#> 49     0.58012 -9.08e-03
#> 50    -0.19400  3.04e-03
#> 51    -0.18142  2.84e-03
#> 52    -0.66934  1.05e-02
#> 53     0.37292 -5.84e-03
#> 54    -0.34984  5.48e-03
#> 55     0.16421 -2.57e-03
#> 56     0.95361 -1.49e-02
#> 57    -0.56938  8.91e-03
#> 58    -0.81392  1.27e-02
#> 59     0.07356 -1.15e-03
#> 
#> ---end{ranef}--------------
#> 
#> recover_data:
#> -----
#>      Base       trt  Age Visit
#> 1   1.012   placebo 3.43  -0.3
#> 2   1.012   placebo 3.43  -0.1
#> 3   1.012   placebo 3.43   0.1
#> 4   1.012   placebo 3.43   0.3
#> 5   1.012   placebo 3.40  -0.3
#> 6   1.012   placebo 3.40  -0.1
#> 7   1.012   placebo 3.40   0.1
#> 8   1.012   placebo 3.40   0.3
#> 9   0.405   placebo 3.22  -0.3
#> 10  0.405   placebo 3.22  -0.1
#> 11  0.405   placebo 3.22   0.1
#> 12  0.405   placebo 3.22   0.3
#> 13  0.693   placebo 3.58  -0.3
#> 14  0.693   placebo 3.58  -0.1
#> 15  0.693   placebo 3.58   0.1
#> 16  0.693   placebo 3.58   0.3
#> 17  2.803   placebo 3.09  -0.3
#> 18  2.803   placebo 3.09  -0.1
#> 19  2.803   placebo 3.09   0.1
#> 20  2.803   placebo 3.09   0.3
#> 21  1.910   placebo 3.37  -0.3
#> 22  1.910   placebo 3.37  -0.1
#> 23  1.910   placebo 3.37   0.1
#> 24  1.910   placebo 3.37   0.3
#> 25  1.099   placebo 3.43  -0.3
#> 26  1.099   placebo 3.43  -0.1
#> 27  1.099   placebo 3.43   0.1
#> 28  1.099   placebo 3.43   0.3
#> 29  2.565   placebo 3.74  -0.3
#> 30  2.565   placebo 3.74  -0.1
#> 31  2.565   placebo 3.74   0.1
#> 32  2.565   placebo 3.74   0.3
#> 33  1.749   placebo 3.61  -0.3
#> 34  1.749   placebo 3.61  -0.1
#> 35  1.749   placebo 3.61   0.1
#> 36  1.749   placebo 3.61   0.3
#> 37  0.916   placebo 3.33  -0.3
#> 38  0.916   placebo 3.33  -0.1
#> 39  0.916   placebo 3.33   0.1
#> 40  0.916   placebo 3.33   0.3
#> 41  2.565   placebo 3.58  -0.3
#> 42  2.565   placebo 3.58  -0.1
#> 43  2.565   placebo 3.58   0.1
#> 44  2.565   placebo 3.58   0.3
#> 45  2.110   placebo 3.18  -0.3
#> 46  2.110   placebo 3.18  -0.1
#> 47  2.110   placebo 3.18   0.1
#> 48  2.110   placebo 3.18   0.3
#> 49  1.504   placebo 3.14  -0.3
#> 50  1.504   placebo 3.14  -0.1
#> 51  1.504   placebo 3.14   0.1
#> 52  1.504   placebo 3.14   0.3
#> 53  2.351   placebo 3.58  -0.3
#> 54  2.351   placebo 3.58  -0.1
#> 55  2.351   placebo 3.58   0.1
#> 56  2.351   placebo 3.58   0.3
#> 57  3.080   placebo 3.26  -0.3
#> 58  3.080   placebo 3.26  -0.1
#> 59  3.080   placebo 3.26   0.1
#> 60  3.080   placebo 3.26   0.3
#> 61  2.526   placebo 3.26  -0.3
#> 62  2.526   placebo 3.26  -0.1
#> 63  2.526   placebo 3.26   0.1
#> 64  2.526   placebo 3.26   0.3
#> 65  1.504   placebo 3.33  -0.3
#> 66  1.504   placebo 3.33  -0.1
#> 67  1.504   placebo 3.33   0.1
#> 68  1.504   placebo 3.33   0.3
#> 69  3.323   placebo 3.43  -0.3
#> 70  3.323   placebo 3.43  -0.1
#> 71  3.323   placebo 3.43   0.1
#> 72  3.323   placebo 3.43   0.3
#> 73  1.504   placebo 3.47  -0.3
#> 74  1.504   placebo 3.47  -0.1
#> 75  1.504   placebo 3.47   0.1
#> 76  1.504   placebo 3.47   0.3
#> 77  1.609   placebo 3.04  -0.3
#> 78  1.609   placebo 3.04  -0.1
#> 79  1.609   placebo 3.04   0.1
#> 80  1.609   placebo 3.04   0.3
#> 81  1.099   placebo 3.37  -0.3
#> 82  1.099   placebo 3.37  -0.1
#> 83  1.099   placebo 3.37   0.1
#> 84  1.099   placebo 3.37   0.3
#> 85  0.811   placebo 3.04  -0.3
#> 86  0.811   placebo 3.04  -0.1
#> 87  0.811   placebo 3.04   0.1
#> 88  0.811   placebo 3.04   0.3
#> 89  1.447   placebo 3.47  -0.3
#> 90  1.447   placebo 3.47  -0.1
#> 91  1.447   placebo 3.47   0.1
#> 92  1.447   placebo 3.47   0.3
#> 93  1.946   placebo 3.22  -0.3
#> 94  1.946   placebo 3.22  -0.1
#> 95  1.946   placebo 3.22   0.1
#> 96  1.946   placebo 3.22   0.3
#> 97  2.621   placebo 3.40  -0.3
#> 98  2.621   placebo 3.40  -0.1
#> 99  2.621   placebo 3.40   0.1
#> 100 2.621   placebo 3.40   0.3
#> 101 0.811   placebo 3.69  -0.3
#> 102 0.811   placebo 3.69  -0.1
#> 103 0.811   placebo 3.69   0.1
#> 104 0.811   placebo 3.69   0.3
#> 105 0.916   placebo 2.94  -0.3
#> 106 0.916   placebo 2.94  -0.1
#> 107 0.916   placebo 2.94   0.1
#> 108 0.916   placebo 2.94   0.3
#> 109 2.464   placebo 3.09  -0.3
#> 110 2.464   placebo 3.09  -0.1
#> 111 2.464   placebo 3.09   0.1
#> 112 2.464   placebo 3.09   0.3
#> 113 2.944 progabide 2.89  -0.3
#> 114 2.944 progabide 2.89  -0.1
#> 115 2.944 progabide 2.89   0.1
#> 116 2.944 progabide 2.89   0.3
#> 117 2.251 progabide 3.47  -0.3
#> 118 2.251 progabide 3.47  -0.1
#> 119 2.251 progabide 3.47   0.1
#> 120 2.251 progabide 3.47   0.3
#> 121 1.558 progabide 3.00  -0.3
#> 122 1.558 progabide 3.00  -0.1
#> 123 1.558 progabide 3.00   0.1
#> 124 1.558 progabide 3.00   0.3
#> 125 0.916 progabide 3.40  -0.3
#> 126 0.916 progabide 3.40  -0.1
#> 127 0.916 progabide 3.40   0.1
#> 128 0.916 progabide 3.40   0.3
#> 129 1.558 progabide 2.89  -0.3
#> 130 1.558 progabide 2.89  -0.1
#> 131 1.558 progabide 2.89   0.1
#> 132 1.558 progabide 2.89   0.3
#> 133 1.792 progabide 3.18  -0.3
#> 134 1.792 progabide 3.18  -0.1
#> 135 1.792 progabide 3.18   0.1
#> 136 1.792 progabide 3.18   0.3
#> 137 2.048 progabide 3.40  -0.3
#> 138 2.048 progabide 3.40  -0.1
#> 139 2.048 progabide 3.40   0.1
#> 140 2.048 progabide 3.40   0.3
#> 141 1.253 progabide 3.56  -0.3
#> 142 1.253 progabide 3.56  -0.1
#> 143 1.253 progabide 3.56   0.1
#> 144 1.253 progabide 3.56   0.3
#> 145 1.012 progabide 3.30  -0.3
#> 146 1.012 progabide 3.30  -0.1
#> 147 1.012 progabide 3.30   0.1
#> 148 1.012 progabide 3.30   0.3
#> 149 2.818 progabide 3.00  -0.3
#> 150 2.818 progabide 3.00  -0.1
#> 151 2.818 progabide 3.00   0.1
#> 152 2.818 progabide 3.00   0.3
#> 153 2.327 progabide 3.09  -0.3
#> 154 2.327 progabide 3.09  -0.1
#> 155 2.327 progabide 3.09   0.1
#> 156 2.327 progabide 3.09   0.3
#> 157 0.560 progabide 3.33  -0.3
#> 158 0.560 progabide 3.33  -0.1
#> 159 0.560 progabide 3.33   0.1
#> 160 0.560 progabide 3.33   0.3
#> 161 1.705 progabide 3.14  -0.3
#> 162 1.705 progabide 3.14  -0.1
#> 163 1.705 progabide 3.14   0.1
#> 164 1.705 progabide 3.14   0.3
#> 165 1.179 progabide 3.69  -0.3
#> 166 1.179 progabide 3.69  -0.1
#> 167 1.179 progabide 3.69   0.1
#> 168 1.179 progabide 3.69   0.3
#> 169 2.442 progabide 3.50  -0.3
#> 170 2.442 progabide 3.50  -0.1
#> 171 2.442 progabide 3.50   0.1
#> 172 2.442 progabide 3.50   0.3
#> 173 2.197 progabide 3.04  -0.3
#> 174 2.197 progabide 3.04  -0.1
#> 175 2.197 progabide 3.04   0.1
#> 176 2.197 progabide 3.04   0.3
#> 177 2.251 progabide 3.56  -0.3
#> 178 2.251 progabide 3.56  -0.1
#> 179 2.251 progabide 3.56   0.1
#> 180 2.251 progabide 3.56   0.3
#> 181 0.560 progabide 3.22  -0.3
#> 182 0.560 progabide 3.22  -0.1
#> 183 0.560 progabide 3.22   0.1
#> 184 0.560 progabide 3.22   0.3
#> 185 2.197 progabide 3.26  -0.3
#> 186 2.197 progabide 3.26  -0.1
#> 187 2.197 progabide 3.26   0.1
#> 188 2.197 progabide 3.26   0.3
#> 189 1.012 progabide 3.22  -0.3
#> 190 1.012 progabide 3.22  -0.1
#> 191 1.012 progabide 3.22   0.1
#> 192 1.012 progabide 3.22   0.3
#> 193 3.631 progabide 3.09  -0.3
#> 194 3.631 progabide 3.09  -0.1
#> 195 3.631 progabide 3.09   0.1
#> 196 3.631 progabide 3.09   0.3
#> 197 1.705 progabide 3.47  -0.3
#> 198 1.705 progabide 3.47  -0.1
#> 199 1.705 progabide 3.47   0.1
#> 200 1.705 progabide 3.47   0.3
#> 201 2.327 progabide 3.22  -0.3
#> 202 2.327 progabide 3.22  -0.1
#> 203 2.327 progabide 3.22   0.1
#> 204 2.327 progabide 3.22   0.3
#> 205 2.079 progabide 3.56  -0.3
#> 206 2.079 progabide 3.56  -0.1
#> 207 2.079 progabide 3.56   0.1
#> 208 2.079 progabide 3.56   0.3
#> 209 2.639 progabide 3.04  -0.3
#> 210 2.639 progabide 3.04  -0.1
#> 211 2.639 progabide 3.04   0.1
#> 212 2.639 progabide 3.04   0.3
#> 213 1.792 progabide 3.71  -0.3
#> 214 1.792 progabide 3.71  -0.1
#> 215 1.792 progabide 3.71   0.1
#> 216 1.792 progabide 3.71   0.3
#> 217 1.386 progabide 3.47  -0.3
#> 218 1.386 progabide 3.47  -0.1
#> 219 1.386 progabide 3.47   0.1
#> 220 1.386 progabide 3.47   0.3
#> 221 1.705 progabide 3.26  -0.3
#> 222 1.705 progabide 3.26  -0.1
#> 223 1.705 progabide 3.26   0.1
#> 224 1.705 progabide 3.26   0.3
#> 225 1.833 progabide 3.04  -0.3
#> 226 1.833 progabide 3.04  -0.1
#> 227 1.833 progabide 3.04   0.1
#> 228 1.833 progabide 3.04   0.3
#> 229 1.179 progabide 3.58  -0.3
#> 230 1.179 progabide 3.58  -0.1
#> 231 1.179 progabide 3.58   0.1
#> 232 1.179 progabide 3.58   0.3
#> 233 1.099 progabide 3.61  -0.3
#> 234 1.099 progabide 3.61  -0.1
#> 235 1.099 progabide 3.61   0.1
#> 236 1.099 progabide 3.61   0.3
#> ---end{recover_data}--------------
#> 
#> refit:
#> -----
#> ** Error: argument "newresp" is missing, with no default 
#> ---end{refit}--------------
#> 
#> residuals:
#> -----
#>         1         2         3         4         5         6         7         8 
#>   1.28616  -0.51932  -0.33500  -0.16032  -0.70036   1.49358  -0.32265  -0.14850 
#>         9        10        11        12        13        14        15        16 
#>  -0.52082   1.61307  -2.26015   2.85989   0.70623   0.87963  -1.95610   1.19952 
#>        17        18        19        20        21        22        23        24 
#>  -8.01266   3.77251  -4.48338   8.22181  -1.39350  -4.06278   2.25084   1.54823 
#>        25        26        27        28        29        30        31        32 
#>   2.56912   0.74723  -3.08390  -0.92381  16.84072  -1.92488   0.24372  -7.64997 
#>        33        34        35        36        37        38        39        40 
#>  -1.32427   0.00317   0.31365  -0.39194   7.02952   6.41027  -0.22978  -5.88949 
#>        41        42        43        44        45        46        47        48 
#>   8.68965  -4.39885  -9.53535   7.28268   3.86846  -1.70725   0.69490  -2.92393 
#>        49        50        51        52        53        54        55        56 
#>  -0.46494  -0.23254   1.98777  -1.80339  -4.69066  -2.08210   1.49477   4.04162 
#>        57        58        59        60        61        62        63        64 
#>  -0.62229   8.23619  -4.94966  -5.17756   5.10456  -5.60050  -5.32031  -0.05413 
#>        65        66        67        68        69        70        71        72 
#>  -2.72771  -2.59045   0.53989   0.66368   4.71255  -1.58508  -0.97246   1.55513 
#>        73        74        75        76        77        78        79        80 
#>  -1.49494   0.73704  -2.04295   1.16570  -1.56674  -4.32941   1.89558   3.10889 
#>        81        82        83        84        85        86        87        88 
#>  -0.77914   0.41848  -0.39423   0.78326  -0.30571   0.86982   0.03603   1.19342 
#>        89        90        91        92        93        94        95        96 
#>  -2.04903  -0.84071  -0.64310   1.54433   0.07396   4.48988  -5.11602   1.25739 
#>        97        98        99       100       101       102       103       104 
#> -15.91980  -8.06278  45.69258  -3.64817  -0.25896  -1.14358  -0.03410  -0.93020 
#>       105       106       107       108       109       110       111       112 
#>   0.32957  -1.53067   1.60177  -0.27272  -0.63994   2.08167   0.76510   0.41237 
#>       113       114       115       116       117       118       119       120 
#>  -1.20902   2.41876  -1.98574  -2.42087   0.08892  -0.50103   1.88778  -2.74357 
#>       121       122       123       124       125       126       127       128 
#>  -2.35623   1.76490   0.87981  -2.01119   0.24433   3.39209  -1.46808   0.66426 
#>       129       130       131       132       133       134       135       136 
#>  -2.42199   1.81422   3.03781   0.24945   0.54211  -0.27999  -2.11125   0.04882 
#>       137       138       139       140       141       142       143       144 
#>   5.28770   1.20458   4.07115   1.89018   0.48142  -0.27615   2.95328   0.17039 
#>       145       146       147       148       149       150       151       152 
#>  -0.34393   1.78017  -2.10230   2.00901  -5.01350  -0.60897  -0.22485   0.13987 
#>       153       154       155       156       157       158       159       160 
#>  -3.95503  10.45942  -5.14772  -1.77533   0.91356  -0.02967   0.02413  -0.92487 
#>       161       162       163       164       165       166       167       168 
#>  -2.43376  -0.31016   1.80715  -2.08149   1.94529   1.10590  -2.74193   0.40223 
#>       169       170       171       172       173       174       175       176 
#>  -5.47459  -1.59704  10.23378   1.02034   2.97767  -1.65531  -3.30747   2.02218 
#>       177       178       179       180       181       182       183       184 
#>   8.75705  -2.70549  -3.19624  -1.71370  -0.42943  -0.35335   0.71868   1.78687 
#>       185       186       187       188       189       190       191       192 
#>  -2.47015   1.97470   0.39619   0.79554   0.71368  -0.22035  -1.15777  -1.09840 
#>       193       194       195       196       197       198       199       200 
#>  27.89401  -5.10513   5.67974   0.26027   0.12804  -0.67180  -1.48200   0.69800 
#>       201       202       203       204       205       206       207       208 
#>   0.54005  -1.07404  -1.70810   0.63892  -2.95861  -0.75957  -2.57053   1.60900 
#>       209       210       211       212       213       214       215       216 
#>   0.45763  -5.60605  12.28029  -1.88068   1.86062  -0.92732   0.27388  -3.53523 
#>       217       218       219       220       221       222       223       224 
#>  -0.76205   1.43642   0.62442  -0.19750 -10.11845  12.49410   9.07291  -1.38016 
#>       225       226       227       228       229       230       231       232 
#>  -0.54350   0.58514  -2.29272  -1.17676  -1.15543  -1.09783  -1.04311  -0.99111 
#>       233       234       235       236 
#>  -1.58929   1.54661   0.67539  -0.20260 
#> ---end{residuals}--------------
#> 
#> sigma:
#> -----
#> [1] 7.46
#> ---end{sigma}--------------
#> 
#> simulate:
#> -----
#>     sim_1
#> 1       2
#> 2       2
#> 3       7
#> 4       3
#> 5       7
#> 6       9
#> 7       6
#> 8      11
#> 9       4
#> 10      0
#> 11      0
#> 12      5
#> 13      4
#> 14      2
#> 15      1
#> 16      4
#> 17      7
#> 18      9
#> 19      6
#> 20     10
#> 21      6
#> 22     10
#> 23      5
#> 24      3
#> 25      2
#> 26      4
#> 27      3
#> 28      5
#> 29      9
#> 30     29
#> 31     11
#> 32     24
#> 33     15
#> 34      4
#> 35     15
#> 36      8
#> 37      4
#> 38      1
#> 39      3
#> 40      5
#> 41      8
#> 42     27
#> 43     21
#> 44     12
#> 45     36
#> 46     24
#> 47     25
#> 48      3
#> 49      6
#> 50     11
#> 51      7
#> 52      2
#> 53      7
#> 54      2
#> 55      5
#> 56      3
#> 57     39
#> 58     20
#> 59     19
#> 60     34
#> 61      3
#> 62      9
#> 63      4
#> 64      7
#> 65     27
#> 66      9
#> 67     11
#> 68      9
#> 69     31
#> 70     26
#> 71     17
#> 72     17
#> 73      4
#> 74      2
#> 75      2
#> 76      1
#> 77      3
#> 78      2
#> 79      1
#> 80      4
#> 81      4
#> 82      8
#> 83     16
#> 84      2
#> 85      8
#> 86      8
#> 87      4
#> 88      9
#> 89      6
#> 90     11
#> 91      6
#> 92      5
#> 93      6
#> 94      3
#> 95      3
#> 96      7
#> 97     11
#> 98      4
#> 99     11
#> 100     7
#> 101     8
#> 102     6
#> 103     5
#> 104    11
#> 105     2
#> 106     8
#> 107     3
#> 108     2
#> 109     1
#> 110     3
#> 111     2
#> 112     5
#> 113     7
#> 114     3
#> 115    10
#> 116     4
#> 117    11
#> 118     2
#> 119     5
#> 120     1
#> 121     7
#> 122     3
#> 123     1
#> 124     4
#> 125     2
#> 126     3
#> 127     3
#> 128     6
#> 129     2
#> 130     4
#> 131     2
#> 132     2
#> 133     1
#> 134     1
#> 135     0
#> 136     3
#> 137     6
#> 138    14
#> 139     8
#> 140     3
#> 141     2
#> 142     4
#> 143     4
#> 144     1
#> 145     1
#> 146     3
#> 147     0
#> 148     3
#> 149     7
#> 150     3
#> 151     1
#> 152     7
#> 153    18
#> 154     6
#> 155    10
#> 156     8
#> 157     0
#> 158     0
#> 159     1
#> 160     0
#> 161     3
#> 162     2
#> 163     3
#> 164     3
#> 165     4
#> 166     7
#> 167     1
#> 168     8
#> 169    18
#> 170    11
#> 171    20
#> 172     4
#> 173     7
#> 174     5
#> 175     9
#> 176     6
#> 177    12
#> 178     2
#> 179     8
#> 180    15
#> 181     0
#> 182     0
#> 183     0
#> 184     3
#> 185     1
#> 186     3
#> 187     4
#> 188     2
#> 189     1
#> 190     2
#> 191     3
#> 192     1
#> 193    38
#> 194    28
#> 195    23
#> 196    19
#> 197    16
#> 198     3
#> 199    11
#> 200     1
#> 201     9
#> 202     7
#> 203     3
#> 204     7
#> 205     9
#> 206     2
#> 207    10
#> 208     9
#> 209    10
#> 210    17
#> 211     1
#> 212     9
#> 213    10
#> 214    13
#> 215     3
#> 216     5
#> 217     0
#> 218     3
#> 219     4
#> 220     5
#> 221     3
#> 222     1
#> 223     5
#> 224     2
#> 225     4
#> 226     4
#> 227     5
#> 228     5
#> 229     5
#> 230     8
#> 231     5
#> 232     4
#> 233     0
#> 234     2
#> 235     2
#> 236     2
#> ---end{simulate}--------------
#> 
#> summary:
#> -----
#>  Family: nbinom2  ( log )
#> Formula:          y ~ Base * trt + Age + Visit + (Visit | subject)
#> Data: epil2
#> 
#>      AIC      BIC   logLik deviance df.resid 
#>     1269     1304     -625     1249      226 
#> 
#> Random effects:
#> 
#> Conditional model:
#>  Groups  Name        Variance Std.Dev. Corr  
#>  subject (Intercept) 2.17e-01 0.4660         
#>          Visit       5.33e-05 0.0073   -1.00 
#> Number of obs: 236, groups:  subject, 59
#> 
#> Dispersion parameter for nbinom2 family (): 7.46 
#> 
#> Conditional model:
#>                   Estimate Std. Error z value Pr(>|z|)    
#> (Intercept)         -1.322      1.197   -1.10    0.269    
#> Base                 0.884      0.131    6.74  1.6e-11 ***
#> trtprogabide        -0.928      0.402   -2.31    0.021 *  
#> Age                  0.473      0.353    1.34    0.180    
#> Visit               -0.268      0.173   -1.55    0.121    
#> Base:trtprogabide    0.336      0.204    1.65    0.100 .  
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> ---end{summary}--------------
#> 
#> terms:
#> -----
#> y ~ Base * trt + Age + Visit
#> attr(,"variables")
#> list(y, Base, trt, Age, Visit)
#> attr(,"factors")
#>       Base trt Age Visit Base:trt
#> y        0   0   0     0        0
#> Base     1   0   0     0        1
#> trt      0   1   0     0        1
#> Age      0   0   1     0        0
#> Visit    0   0   0     1        0
#> attr(,"term.labels")
#> [1] "Base"     "trt"      "Age"      "Visit"    "Base:trt"
#> attr(,"order")
#> [1] 1 1 1 1 2
#> attr(,"intercept")
#> [1] 1
#> attr(,"response")
#> [1] 1
#> attr(,".Environment")
#> <environment: 0x7fa874e3ac80>
#> attr(,"predvars")
#> list(y, Base, trt, Age, Visit)
#> attr(,"dataClasses")
#>         y      Base       trt       Age     Visit 
#> "numeric" "numeric"  "factor" "numeric" "numeric" 
#> ---end{terms}--------------
#> 
#> vcov:
#> -----
#> Conditional model:
#>                   (Intercept)      Base trtprogabide      Age     Visit
#> (Intercept)           1.43367 -0.022869      0.03038 -0.41260  0.008344
#> Base                 -0.02287  0.017201      0.03157 -0.00242  0.000321
#> trtprogabide          0.03038  0.031572      0.16143 -0.02925  0.001870
#> Age                  -0.41260 -0.002417     -0.02925  0.12451 -0.002613
#> Visit                 0.00834  0.000321      0.00187 -0.00261  0.030015
#> Base:trtprogabide    -0.03366 -0.017596     -0.07637  0.01951 -0.001092
#>                   Base:trtprogabide
#> (Intercept)                -0.03366
#> Base                       -0.01760
#> trtprogabide               -0.07637
#> Age                         0.01951
#> Visit                      -0.00109
#> Base:trtprogabide           0.04172
#> 
#> ---end{vcov}--------------
#> 
#> weights:
#> -----
#> NULL
#> ---end{weights}--------------
#> 
options(op)
# }