epil2.Rd
Extended version of the epil
dataset of the MASS package.
The three transformed variables Visit
, Base
, and
Age
used by Booth et al. (2003) have been added to epil
.
epil2
A data frame with 236 observations on the following 12 variables:
y
an integer vector.
trt
a factor with levels "placebo"
and
"progabide"
.
base
an integer vector.
age
an integer vector.
V4
an integer vector.
subject
an integer vector.
period
an integer vector.
lbase
a numeric vector.
lage
a numeric vector.
(rep(1:4,59) - 2.5) / 5
.
log(base/4)
.
log(age)
.
Booth, J.G., G. Casella, H. Friedl, and J.P. Hobert. (2003) Negative binomial loglinear mixed models. Statistical Modelling 3, 179--191.
# \donttest{
epil2$subject <- factor(epil2$subject)
op <- options(digits=3)
(fm <- glmmTMB(y ~ Base*trt + Age + Visit + (Visit|subject),
data=epil2, family=nbinom2))
#> Formula: y ~ Base * trt + Age + Visit + (Visit | subject)
#> Data: epil2
#> AIC BIC logLik df.resid
#> 1269 1304 -625 226
#> Random-effects (co)variances:
#>
#> Conditional model:
#> Groups Name Std.Dev. Corr
#> subject (Intercept) 0.4660
#> Visit 0.0073 -1.00
#>
#> Number of obs: 236 / Conditional model: subject, 59
#>
#> Dispersion parameter for nbinom2 family (): 7.46
#>
#> Fixed Effects:
#>
#> Conditional model:
#> (Intercept) Base trtprogabide Age
#> -1.322 0.884 -0.928 0.473
#> Visit Base:trtprogabide
#> -0.268 0.336
meths <- methods(class = class(fm))
if((Rv <- getRversion()) > "3.1.3") {
funs <- attr(meths, "info")[, "generic"]
funs <- setdiff(funs, "profile") ## too slow! pkgdown is trying to run this??
for(fun in funs[is.na(match(funs, "getME"))]) {
cat(sprintf("%s:\n-----\n", fun))
r <- tryCatch( get(fun)(fm), error=identity)
if (inherits(r, "error")) cat("** Error:", r$message,"\n")
else tryCatch( print(r) )
cat(sprintf("---end{%s}--------------\n\n", fun))
}
}
#> Anova:
#> -----
#> Analysis of Deviance Table (Type II Wald chisquare tests)
#>
#> Response: y
#> Chisq Df Pr(>Chisq)
#> Base 107.66 1 <2e-16 ***
#> trt 4.52 1 0.033 *
#> Age 1.79 1 0.180
#> Visit 2.40 1 0.121
#> Base:trt 2.71 1 0.100 .
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> ---end{Anova}--------------
#>
#> Effect:
#> -----
#> ** Error: argument "mod" is missing, with no default
#> ---end{Effect}--------------
#>
#> VarCorr:
#> -----
#>
#> Conditional model:
#> Groups Name Std.Dev. Corr
#> subject (Intercept) 0.4660
#> Visit 0.0073 -1.00
#> ---end{VarCorr}--------------
#>
#> anova:
#> -----
#> ** Error: no single-model anova() method for glmmTMB
#> ---end{anova}--------------
#>
#> coef:
#> -----
#> $subject
#> (Intercept) Base trtprogabide Age Visit Base:trtprogabide
#> 1 -1.286 0.884 -0.928 0.473 -0.269 0.336
#> 2 -1.275 0.884 -0.928 0.473 -0.269 0.336
#> 3 -1.037 0.884 -0.928 0.473 -0.273 0.336
#> 4 -1.196 0.884 -0.928 0.473 -0.270 0.336
#> 5 -1.312 0.884 -0.928 0.473 -0.269 0.336
#> 6 -1.505 0.884 -0.928 0.473 -0.266 0.336
#> 7 -1.442 0.884 -0.928 0.473 -0.267 0.336
#> 8 -0.975 0.884 -0.928 0.473 -0.274 0.336
#> 9 -1.489 0.884 -0.928 0.473 -0.266 0.336
#> 10 -0.528 0.884 -0.928 0.473 -0.281 0.336
#> 11 -1.192 0.884 -0.928 0.473 -0.270 0.336
#> 12 -1.353 0.884 -0.928 0.473 -0.268 0.336
#> 13 -1.396 0.884 -0.928 0.473 -0.267 0.336
#> 14 -1.395 0.884 -0.928 0.473 -0.267 0.336
#> 15 -1.532 0.884 -0.928 0.473 -0.265 0.336
#> 16 -2.076 0.884 -0.928 0.473 -0.257 0.336
#> 17 -1.979 0.884 -0.928 0.473 -0.258 0.336
#> 18 -1.168 0.884 -0.928 0.473 -0.271 0.336
#> 19 -1.545 0.884 -0.928 0.473 -0.265 0.336
#> 20 -1.424 0.884 -0.928 0.473 -0.267 0.336
#> 21 -1.314 0.884 -0.928 0.473 -0.269 0.336
#> 22 -1.042 0.884 -0.928 0.473 -0.273 0.336
#> 23 -1.598 0.884 -0.928 0.473 -0.264 0.336
#> 24 -1.253 0.884 -0.928 0.473 -0.270 0.336
#> 25 -0.486 0.884 -0.928 0.473 -0.282 0.336
#> 26 -1.725 0.884 -0.928 0.473 -0.262 0.336
#> 27 -1.300 0.884 -0.928 0.473 -0.269 0.336
#> 28 -1.108 0.884 -0.928 0.473 -0.272 0.336
#> 29 -1.609 0.884 -0.928 0.473 -0.264 0.336
#> 30 -1.469 0.884 -0.928 0.473 -0.266 0.336
#> 31 -1.612 0.884 -0.928 0.473 -0.264 0.336
#> 32 -0.867 0.884 -0.928 0.473 -0.276 0.336
#> 33 -0.935 0.884 -0.928 0.473 -0.274 0.336
#> 34 -1.599 0.884 -0.928 0.473 -0.264 0.336
#> 35 -0.447 0.884 -0.928 0.473 -0.282 0.336
#> 36 -0.856 0.884 -0.928 0.473 -0.276 0.336
#> 37 -1.094 0.884 -0.928 0.473 -0.272 0.336
#> 38 -1.924 0.884 -0.928 0.473 -0.259 0.336
#> 39 -1.380 0.884 -0.928 0.473 -0.268 0.336
#> 40 -1.327 0.884 -0.928 0.473 -0.268 0.336
#> 41 -1.823 0.884 -0.928 0.473 -0.261 0.336
#> 42 -1.218 0.884 -0.928 0.473 -0.270 0.336
#> 43 -0.986 0.884 -0.928 0.473 -0.274 0.336
#> 44 -1.324 0.884 -0.928 0.473 -0.268 0.336
#> 45 -1.254 0.884 -0.928 0.473 -0.269 0.336
#> 46 -1.001 0.884 -0.928 0.473 -0.273 0.336
#> 47 -1.238 0.884 -0.928 0.473 -0.270 0.336
#> 48 -1.655 0.884 -0.928 0.473 -0.263 0.336
#> 49 -0.742 0.884 -0.928 0.473 -0.278 0.336
#> 50 -1.516 0.884 -0.928 0.473 -0.265 0.336
#> 51 -1.504 0.884 -0.928 0.473 -0.266 0.336
#> 52 -1.992 0.884 -0.928 0.473 -0.258 0.336
#> 53 -0.950 0.884 -0.928 0.473 -0.274 0.336
#> 54 -1.672 0.884 -0.928 0.473 -0.263 0.336
#> 55 -1.158 0.884 -0.928 0.473 -0.271 0.336
#> 56 -0.369 0.884 -0.928 0.473 -0.283 0.336
#> 57 -1.892 0.884 -0.928 0.473 -0.260 0.336
#> 58 -2.136 0.884 -0.928 0.473 -0.256 0.336
#> 59 -1.249 0.884 -0.928 0.473 -0.270 0.336
#>
#> ---end{coef}--------------
#>
#> confint:
#> -----
#> 2.5 % 97.5 % Estimate
#> (Intercept) -3.67e+00 1.02e+00 -1.3225
#> Base 6.27e-01 1.14e+00 0.8843
#> trtprogabide -1.72e+00 -1.41e-01 -0.9284
#> Age -2.19e-01 1.16e+00 0.4727
#> Visit -6.08e-01 7.11e-02 -0.2684
#> Base:trtprogabide -6.40e-02 7.37e-01 0.3363
#> Std.Dev.(Intercept)|subject 3.57e-01 6.08e-01 0.4660
#> Std.Dev.Visit|subject 2.93e-26 1.82e+21 0.0073
#> Cor.Visit.(Intercept)|subject -1.00e+00 1.00e+00 -0.9990
#> ---end{confint}--------------
#>
#> deviance:
#> -----
#> [1] 226
#> ---end{deviance}--------------
#>
#> df.residual:
#> -----
#> [1] 226
#> ---end{df.residual}--------------
#>
#> emm_basis:
#> -----
#> ** Error: argument "trms" is missing, with no default
#> ---end{emm_basis}--------------
#>
#> extractAIC:
#> -----
#> [1] 10 1269
#> ---end{extractAIC}--------------
#>
#> family:
#> -----
#>
#> Family: nbinom2
#> Link function: log
#>
#> ---end{family}--------------
#>
#> fitted:
#> -----
#> [1] 3.714 3.519 3.335 3.160 3.700 3.506 3.323 3.149 2.521 2.387
#> [11] 2.260 2.140 3.294 3.120 2.956 2.800 15.013 14.227 13.483 12.778
#> [21] 6.394 6.063 5.749 5.452 3.431 3.253 3.084 2.924 23.159 21.925
#> [31] 20.756 19.650 6.324 5.997 5.686 5.392 6.970 6.590 6.230 5.889
#> [41] 17.310 16.399 15.535 14.717 8.132 7.707 7.305 6.924 4.465 4.233
#> [51] 4.012 3.803 11.691 11.082 10.505 9.958 16.622 15.764 14.950 14.178
#> [61] 5.895 5.600 5.320 5.054 2.728 2.590 2.460 2.336 32.287 30.585
#> [71] 28.972 27.445 4.495 4.263 4.043 3.834 4.567 4.329 4.104 3.891
#> [81] 3.779 3.582 3.394 3.217 3.306 3.130 2.964 2.807 4.049 3.841
#> [91] 3.643 3.456 7.926 7.510 7.116 6.743 33.920 32.063 30.307 28.648
#> [101] 2.259 2.144 2.034 1.930 2.670 2.531 2.398 2.273 13.640 12.918
#> [111] 12.235 11.588 12.209 11.581 10.986 10.421 7.911 7.501 7.112 6.744
#> [121] 2.356 2.235 2.120 2.011 2.756 2.608 2.468 2.336 4.422 4.186
#> [131] 3.962 3.751 3.458 3.280 3.111 2.951 16.712 15.795 14.929 14.110
#> [141] 4.519 4.276 4.047 3.830 2.344 2.220 2.102 1.991 8.014 7.609
#> [151] 7.225 6.860 7.955 7.541 7.148 6.775 1.086 1.030 0.976 0.925
#> [161] 2.434 2.310 2.193 2.081 3.055 2.894 2.742 2.598 16.475 15.597
#> [171] 14.766 13.980 7.022 6.655 6.307 5.978 10.243 9.705 9.196 8.714
#> [181] 1.429 1.353 1.281 1.213 8.470 8.025 7.604 7.204 1.286 1.220
#> [191] 1.158 1.098 74.106 70.105 66.320 62.740 3.872 3.672 3.482 3.302
#> [201] 7.460 7.074 6.708 6.361 3.959 3.760 3.571 3.391 17.542 16.606
#> [211] 15.720 14.881 4.139 3.927 3.726 3.535 3.762 3.564 3.376 3.197
#> [221] 11.118 10.506 9.927 9.380 2.544 2.415 2.293 2.177 1.155 1.098
#> [231] 1.043 0.991 2.589 2.453 2.325 2.203
#> ---end{fitted}--------------
#>
#> fixef:
#> -----
#>
#> Conditional model:
#> (Intercept) Base trtprogabide Age
#> -1.322 0.884 -0.928 0.473
#> Visit Base:trtprogabide
#> -0.268 0.336
#> ---end{fixef}--------------
#>
#> formula:
#> -----
#> y ~ Base * trt + Age + Visit + (Visit | subject)
#> <environment: 0x7fa874e3ac80>
#> ---end{formula}--------------
#>
#> logLik:
#> -----
#> 'log Lik.' -625 (df=10)
#> ---end{logLik}--------------
#>
#> model.frame:
#> -----
#> y Base trt Age Visit subject
#> 1 5 1.012 placebo 3.43 -0.3 1
#> 2 3 1.012 placebo 3.43 -0.1 1
#> 3 3 1.012 placebo 3.43 0.1 1
#> 4 3 1.012 placebo 3.43 0.3 1
#> 5 3 1.012 placebo 3.40 -0.3 2
#> 6 5 1.012 placebo 3.40 -0.1 2
#> 7 3 1.012 placebo 3.40 0.1 2
#> 8 3 1.012 placebo 3.40 0.3 2
#> 9 2 0.405 placebo 3.22 -0.3 3
#> 10 4 0.405 placebo 3.22 -0.1 3
#> 11 0 0.405 placebo 3.22 0.1 3
#> 12 5 0.405 placebo 3.22 0.3 3
#> 13 4 0.693 placebo 3.58 -0.3 4
#> 14 4 0.693 placebo 3.58 -0.1 4
#> 15 1 0.693 placebo 3.58 0.1 4
#> 16 4 0.693 placebo 3.58 0.3 4
#> 17 7 2.803 placebo 3.09 -0.3 5
#> 18 18 2.803 placebo 3.09 -0.1 5
#> 19 9 2.803 placebo 3.09 0.1 5
#> 20 21 2.803 placebo 3.09 0.3 5
#> 21 5 1.910 placebo 3.37 -0.3 6
#> 22 2 1.910 placebo 3.37 -0.1 6
#> 23 8 1.910 placebo 3.37 0.1 6
#> 24 7 1.910 placebo 3.37 0.3 6
#> 25 6 1.099 placebo 3.43 -0.3 7
#> 26 4 1.099 placebo 3.43 -0.1 7
#> 27 0 1.099 placebo 3.43 0.1 7
#> 28 2 1.099 placebo 3.43 0.3 7
#> 29 40 2.565 placebo 3.74 -0.3 8
#> 30 20 2.565 placebo 3.74 -0.1 8
#> 31 21 2.565 placebo 3.74 0.1 8
#> 32 12 2.565 placebo 3.74 0.3 8
#> 33 5 1.749 placebo 3.61 -0.3 9
#> 34 6 1.749 placebo 3.61 -0.1 9
#> 35 6 1.749 placebo 3.61 0.1 9
#> 36 5 1.749 placebo 3.61 0.3 9
#> 37 14 0.916 placebo 3.33 -0.3 10
#> 38 13 0.916 placebo 3.33 -0.1 10
#> 39 6 0.916 placebo 3.33 0.1 10
#> 40 0 0.916 placebo 3.33 0.3 10
#> 41 26 2.565 placebo 3.58 -0.3 11
#> 42 12 2.565 placebo 3.58 -0.1 11
#> 43 6 2.565 placebo 3.58 0.1 11
#> 44 22 2.565 placebo 3.58 0.3 11
#> 45 12 2.110 placebo 3.18 -0.3 12
#> 46 6 2.110 placebo 3.18 -0.1 12
#> 47 8 2.110 placebo 3.18 0.1 12
#> 48 4 2.110 placebo 3.18 0.3 12
#> 49 4 1.504 placebo 3.14 -0.3 13
#> 50 4 1.504 placebo 3.14 -0.1 13
#> 51 6 1.504 placebo 3.14 0.1 13
#> 52 2 1.504 placebo 3.14 0.3 13
#> 53 7 2.351 placebo 3.58 -0.3 14
#> 54 9 2.351 placebo 3.58 -0.1 14
#> 55 12 2.351 placebo 3.58 0.1 14
#> 56 14 2.351 placebo 3.58 0.3 14
#> 57 16 3.080 placebo 3.26 -0.3 15
#> 58 24 3.080 placebo 3.26 -0.1 15
#> 59 10 3.080 placebo 3.26 0.1 15
#> 60 9 3.080 placebo 3.26 0.3 15
#> 61 11 2.526 placebo 3.26 -0.3 16
#> 62 0 2.526 placebo 3.26 -0.1 16
#> 63 0 2.526 placebo 3.26 0.1 16
#> 64 5 2.526 placebo 3.26 0.3 16
#> 65 0 1.504 placebo 3.33 -0.3 17
#> 66 0 1.504 placebo 3.33 -0.1 17
#> 67 3 1.504 placebo 3.33 0.1 17
#> 68 3 1.504 placebo 3.33 0.3 17
#> 69 37 3.323 placebo 3.43 -0.3 18
#> 70 29 3.323 placebo 3.43 -0.1 18
#> 71 28 3.323 placebo 3.43 0.1 18
#> 72 29 3.323 placebo 3.43 0.3 18
#> 73 3 1.504 placebo 3.47 -0.3 19
#> 74 5 1.504 placebo 3.47 -0.1 19
#> 75 2 1.504 placebo 3.47 0.1 19
#> 76 5 1.504 placebo 3.47 0.3 19
#> 77 3 1.609 placebo 3.04 -0.3 20
#> 78 0 1.609 placebo 3.04 -0.1 20
#> 79 6 1.609 placebo 3.04 0.1 20
#> 80 7 1.609 placebo 3.04 0.3 20
#> 81 3 1.099 placebo 3.37 -0.3 21
#> 82 4 1.099 placebo 3.37 -0.1 21
#> 83 3 1.099 placebo 3.37 0.1 21
#> 84 4 1.099 placebo 3.37 0.3 21
#> 85 3 0.811 placebo 3.04 -0.3 22
#> 86 4 0.811 placebo 3.04 -0.1 22
#> 87 3 0.811 placebo 3.04 0.1 22
#> 88 4 0.811 placebo 3.04 0.3 22
#> 89 2 1.447 placebo 3.47 -0.3 23
#> 90 3 1.447 placebo 3.47 -0.1 23
#> 91 3 1.447 placebo 3.47 0.1 23
#> 92 5 1.447 placebo 3.47 0.3 23
#> 93 8 1.946 placebo 3.22 -0.3 24
#> 94 12 1.946 placebo 3.22 -0.1 24
#> 95 2 1.946 placebo 3.22 0.1 24
#> 96 8 1.946 placebo 3.22 0.3 24
#> 97 18 2.621 placebo 3.40 -0.3 25
#> 98 24 2.621 placebo 3.40 -0.1 25
#> 99 76 2.621 placebo 3.40 0.1 25
#> 100 25 2.621 placebo 3.40 0.3 25
#> 101 2 0.811 placebo 3.69 -0.3 26
#> 102 1 0.811 placebo 3.69 -0.1 26
#> 103 2 0.811 placebo 3.69 0.1 26
#> 104 1 0.811 placebo 3.69 0.3 26
#> 105 3 0.916 placebo 2.94 -0.3 27
#> 106 1 0.916 placebo 2.94 -0.1 27
#> 107 4 0.916 placebo 2.94 0.1 27
#> 108 2 0.916 placebo 2.94 0.3 27
#> 109 13 2.464 placebo 3.09 -0.3 28
#> 110 15 2.464 placebo 3.09 -0.1 28
#> 111 13 2.464 placebo 3.09 0.1 28
#> 112 12 2.464 placebo 3.09 0.3 28
#> 113 11 2.944 progabide 2.89 -0.3 29
#> 114 14 2.944 progabide 2.89 -0.1 29
#> 115 9 2.944 progabide 2.89 0.1 29
#> 116 8 2.944 progabide 2.89 0.3 29
#> 117 8 2.251 progabide 3.47 -0.3 30
#> 118 7 2.251 progabide 3.47 -0.1 30
#> 119 9 2.251 progabide 3.47 0.1 30
#> 120 4 2.251 progabide 3.47 0.3 30
#> 121 0 1.558 progabide 3.00 -0.3 31
#> 122 4 1.558 progabide 3.00 -0.1 31
#> 123 3 1.558 progabide 3.00 0.1 31
#> 124 0 1.558 progabide 3.00 0.3 31
#> 125 3 0.916 progabide 3.40 -0.3 32
#> 126 6 0.916 progabide 3.40 -0.1 32
#> 127 1 0.916 progabide 3.40 0.1 32
#> 128 3 0.916 progabide 3.40 0.3 32
#> 129 2 1.558 progabide 2.89 -0.3 33
#> 130 6 1.558 progabide 2.89 -0.1 33
#> 131 7 1.558 progabide 2.89 0.1 33
#> 132 4 1.558 progabide 2.89 0.3 33
#> 133 4 1.792 progabide 3.18 -0.3 34
#> 134 3 1.792 progabide 3.18 -0.1 34
#> 135 1 1.792 progabide 3.18 0.1 34
#> 136 3 1.792 progabide 3.18 0.3 34
#> 137 22 2.048 progabide 3.40 -0.3 35
#> 138 17 2.048 progabide 3.40 -0.1 35
#> 139 19 2.048 progabide 3.40 0.1 35
#> 140 16 2.048 progabide 3.40 0.3 35
#> 141 5 1.253 progabide 3.56 -0.3 36
#> 142 4 1.253 progabide 3.56 -0.1 36
#> 143 7 1.253 progabide 3.56 0.1 36
#> 144 4 1.253 progabide 3.56 0.3 36
#> 145 2 1.012 progabide 3.30 -0.3 37
#> 146 4 1.012 progabide 3.30 -0.1 37
#> 147 0 1.012 progabide 3.30 0.1 37
#> 148 4 1.012 progabide 3.30 0.3 37
#> 149 3 2.818 progabide 3.00 -0.3 38
#> 150 7 2.818 progabide 3.00 -0.1 38
#> 151 7 2.818 progabide 3.00 0.1 38
#> 152 7 2.818 progabide 3.00 0.3 38
#> 153 4 2.327 progabide 3.09 -0.3 39
#> 154 18 2.327 progabide 3.09 -0.1 39
#> 155 2 2.327 progabide 3.09 0.1 39
#> 156 5 2.327 progabide 3.09 0.3 39
#> 157 2 0.560 progabide 3.33 -0.3 40
#> 158 1 0.560 progabide 3.33 -0.1 40
#> 159 1 0.560 progabide 3.33 0.1 40
#> 160 0 0.560 progabide 3.33 0.3 40
#> 161 0 1.705 progabide 3.14 -0.3 41
#> 162 2 1.705 progabide 3.14 -0.1 41
#> 163 4 1.705 progabide 3.14 0.1 41
#> 164 0 1.705 progabide 3.14 0.3 41
#> 165 5 1.179 progabide 3.69 -0.3 42
#> 166 4 1.179 progabide 3.69 -0.1 42
#> 167 0 1.179 progabide 3.69 0.1 42
#> 168 3 1.179 progabide 3.69 0.3 42
#> 169 11 2.442 progabide 3.50 -0.3 43
#> 170 14 2.442 progabide 3.50 -0.1 43
#> 171 25 2.442 progabide 3.50 0.1 43
#> 172 15 2.442 progabide 3.50 0.3 43
#> 173 10 2.197 progabide 3.04 -0.3 44
#> 174 5 2.197 progabide 3.04 -0.1 44
#> 175 3 2.197 progabide 3.04 0.1 44
#> 176 8 2.197 progabide 3.04 0.3 44
#> 177 19 2.251 progabide 3.56 -0.3 45
#> 178 7 2.251 progabide 3.56 -0.1 45
#> 179 6 2.251 progabide 3.56 0.1 45
#> 180 7 2.251 progabide 3.56 0.3 45
#> 181 1 0.560 progabide 3.22 -0.3 46
#> 182 1 0.560 progabide 3.22 -0.1 46
#> 183 2 0.560 progabide 3.22 0.1 46
#> 184 3 0.560 progabide 3.22 0.3 46
#> 185 6 2.197 progabide 3.26 -0.3 47
#> 186 10 2.197 progabide 3.26 -0.1 47
#> 187 8 2.197 progabide 3.26 0.1 47
#> 188 8 2.197 progabide 3.26 0.3 47
#> 189 2 1.012 progabide 3.22 -0.3 48
#> 190 1 1.012 progabide 3.22 -0.1 48
#> 191 0 1.012 progabide 3.22 0.1 48
#> 192 0 1.012 progabide 3.22 0.3 48
#> 193 102 3.631 progabide 3.09 -0.3 49
#> 194 65 3.631 progabide 3.09 -0.1 49
#> 195 72 3.631 progabide 3.09 0.1 49
#> 196 63 3.631 progabide 3.09 0.3 49
#> 197 4 1.705 progabide 3.47 -0.3 50
#> 198 3 1.705 progabide 3.47 -0.1 50
#> 199 2 1.705 progabide 3.47 0.1 50
#> 200 4 1.705 progabide 3.47 0.3 50
#> 201 8 2.327 progabide 3.22 -0.3 51
#> 202 6 2.327 progabide 3.22 -0.1 51
#> 203 5 2.327 progabide 3.22 0.1 51
#> 204 7 2.327 progabide 3.22 0.3 51
#> 205 1 2.079 progabide 3.56 -0.3 52
#> 206 3 2.079 progabide 3.56 -0.1 52
#> 207 1 2.079 progabide 3.56 0.1 52
#> 208 5 2.079 progabide 3.56 0.3 52
#> 209 18 2.639 progabide 3.04 -0.3 53
#> 210 11 2.639 progabide 3.04 -0.1 53
#> 211 28 2.639 progabide 3.04 0.1 53
#> 212 13 2.639 progabide 3.04 0.3 53
#> 213 6 1.792 progabide 3.71 -0.3 54
#> 214 3 1.792 progabide 3.71 -0.1 54
#> 215 4 1.792 progabide 3.71 0.1 54
#> 216 0 1.792 progabide 3.71 0.3 54
#> 217 3 1.386 progabide 3.47 -0.3 55
#> 218 5 1.386 progabide 3.47 -0.1 55
#> 219 4 1.386 progabide 3.47 0.1 55
#> 220 3 1.386 progabide 3.47 0.3 55
#> 221 1 1.705 progabide 3.26 -0.3 56
#> 222 23 1.705 progabide 3.26 -0.1 56
#> 223 19 1.705 progabide 3.26 0.1 56
#> 224 8 1.705 progabide 3.26 0.3 56
#> 225 2 1.833 progabide 3.04 -0.3 57
#> 226 3 1.833 progabide 3.04 -0.1 57
#> 227 0 1.833 progabide 3.04 0.1 57
#> 228 1 1.833 progabide 3.04 0.3 57
#> 229 0 1.179 progabide 3.58 -0.3 58
#> 230 0 1.179 progabide 3.58 -0.1 58
#> 231 0 1.179 progabide 3.58 0.1 58
#> 232 0 1.179 progabide 3.58 0.3 58
#> 233 1 1.099 progabide 3.61 -0.3 59
#> 234 4 1.099 progabide 3.61 -0.1 59
#> 235 3 1.099 progabide 3.61 0.1 59
#> 236 2 1.099 progabide 3.61 0.3 59
#> ---end{model.frame}--------------
#>
#> model.matrix:
#> -----
#> (Intercept) Base trtprogabide Age Visit Base:trtprogabide
#> 1 1 1.012 0 3.43 -0.3 0.000
#> 2 1 1.012 0 3.43 -0.1 0.000
#> 3 1 1.012 0 3.43 0.1 0.000
#> 4 1 1.012 0 3.43 0.3 0.000
#> 5 1 1.012 0 3.40 -0.3 0.000
#> 6 1 1.012 0 3.40 -0.1 0.000
#> 7 1 1.012 0 3.40 0.1 0.000
#> 8 1 1.012 0 3.40 0.3 0.000
#> 9 1 0.405 0 3.22 -0.3 0.000
#> 10 1 0.405 0 3.22 -0.1 0.000
#> 11 1 0.405 0 3.22 0.1 0.000
#> 12 1 0.405 0 3.22 0.3 0.000
#> 13 1 0.693 0 3.58 -0.3 0.000
#> 14 1 0.693 0 3.58 -0.1 0.000
#> 15 1 0.693 0 3.58 0.1 0.000
#> 16 1 0.693 0 3.58 0.3 0.000
#> 17 1 2.803 0 3.09 -0.3 0.000
#> 18 1 2.803 0 3.09 -0.1 0.000
#> 19 1 2.803 0 3.09 0.1 0.000
#> 20 1 2.803 0 3.09 0.3 0.000
#> 21 1 1.910 0 3.37 -0.3 0.000
#> 22 1 1.910 0 3.37 -0.1 0.000
#> 23 1 1.910 0 3.37 0.1 0.000
#> 24 1 1.910 0 3.37 0.3 0.000
#> 25 1 1.099 0 3.43 -0.3 0.000
#> 26 1 1.099 0 3.43 -0.1 0.000
#> 27 1 1.099 0 3.43 0.1 0.000
#> 28 1 1.099 0 3.43 0.3 0.000
#> 29 1 2.565 0 3.74 -0.3 0.000
#> 30 1 2.565 0 3.74 -0.1 0.000
#> 31 1 2.565 0 3.74 0.1 0.000
#> 32 1 2.565 0 3.74 0.3 0.000
#> 33 1 1.749 0 3.61 -0.3 0.000
#> 34 1 1.749 0 3.61 -0.1 0.000
#> 35 1 1.749 0 3.61 0.1 0.000
#> 36 1 1.749 0 3.61 0.3 0.000
#> 37 1 0.916 0 3.33 -0.3 0.000
#> 38 1 0.916 0 3.33 -0.1 0.000
#> 39 1 0.916 0 3.33 0.1 0.000
#> 40 1 0.916 0 3.33 0.3 0.000
#> 41 1 2.565 0 3.58 -0.3 0.000
#> 42 1 2.565 0 3.58 -0.1 0.000
#> 43 1 2.565 0 3.58 0.1 0.000
#> 44 1 2.565 0 3.58 0.3 0.000
#> 45 1 2.110 0 3.18 -0.3 0.000
#> 46 1 2.110 0 3.18 -0.1 0.000
#> 47 1 2.110 0 3.18 0.1 0.000
#> 48 1 2.110 0 3.18 0.3 0.000
#> 49 1 1.504 0 3.14 -0.3 0.000
#> 50 1 1.504 0 3.14 -0.1 0.000
#> 51 1 1.504 0 3.14 0.1 0.000
#> 52 1 1.504 0 3.14 0.3 0.000
#> 53 1 2.351 0 3.58 -0.3 0.000
#> 54 1 2.351 0 3.58 -0.1 0.000
#> 55 1 2.351 0 3.58 0.1 0.000
#> 56 1 2.351 0 3.58 0.3 0.000
#> 57 1 3.080 0 3.26 -0.3 0.000
#> 58 1 3.080 0 3.26 -0.1 0.000
#> 59 1 3.080 0 3.26 0.1 0.000
#> 60 1 3.080 0 3.26 0.3 0.000
#> 61 1 2.526 0 3.26 -0.3 0.000
#> 62 1 2.526 0 3.26 -0.1 0.000
#> 63 1 2.526 0 3.26 0.1 0.000
#> 64 1 2.526 0 3.26 0.3 0.000
#> 65 1 1.504 0 3.33 -0.3 0.000
#> 66 1 1.504 0 3.33 -0.1 0.000
#> 67 1 1.504 0 3.33 0.1 0.000
#> 68 1 1.504 0 3.33 0.3 0.000
#> 69 1 3.323 0 3.43 -0.3 0.000
#> 70 1 3.323 0 3.43 -0.1 0.000
#> 71 1 3.323 0 3.43 0.1 0.000
#> 72 1 3.323 0 3.43 0.3 0.000
#> 73 1 1.504 0 3.47 -0.3 0.000
#> 74 1 1.504 0 3.47 -0.1 0.000
#> 75 1 1.504 0 3.47 0.1 0.000
#> 76 1 1.504 0 3.47 0.3 0.000
#> 77 1 1.609 0 3.04 -0.3 0.000
#> 78 1 1.609 0 3.04 -0.1 0.000
#> 79 1 1.609 0 3.04 0.1 0.000
#> 80 1 1.609 0 3.04 0.3 0.000
#> 81 1 1.099 0 3.37 -0.3 0.000
#> 82 1 1.099 0 3.37 -0.1 0.000
#> 83 1 1.099 0 3.37 0.1 0.000
#> 84 1 1.099 0 3.37 0.3 0.000
#> 85 1 0.811 0 3.04 -0.3 0.000
#> 86 1 0.811 0 3.04 -0.1 0.000
#> 87 1 0.811 0 3.04 0.1 0.000
#> 88 1 0.811 0 3.04 0.3 0.000
#> 89 1 1.447 0 3.47 -0.3 0.000
#> 90 1 1.447 0 3.47 -0.1 0.000
#> 91 1 1.447 0 3.47 0.1 0.000
#> 92 1 1.447 0 3.47 0.3 0.000
#> 93 1 1.946 0 3.22 -0.3 0.000
#> 94 1 1.946 0 3.22 -0.1 0.000
#> 95 1 1.946 0 3.22 0.1 0.000
#> 96 1 1.946 0 3.22 0.3 0.000
#> 97 1 2.621 0 3.40 -0.3 0.000
#> 98 1 2.621 0 3.40 -0.1 0.000
#> 99 1 2.621 0 3.40 0.1 0.000
#> 100 1 2.621 0 3.40 0.3 0.000
#> 101 1 0.811 0 3.69 -0.3 0.000
#> 102 1 0.811 0 3.69 -0.1 0.000
#> 103 1 0.811 0 3.69 0.1 0.000
#> 104 1 0.811 0 3.69 0.3 0.000
#> 105 1 0.916 0 2.94 -0.3 0.000
#> 106 1 0.916 0 2.94 -0.1 0.000
#> 107 1 0.916 0 2.94 0.1 0.000
#> 108 1 0.916 0 2.94 0.3 0.000
#> 109 1 2.464 0 3.09 -0.3 0.000
#> 110 1 2.464 0 3.09 -0.1 0.000
#> 111 1 2.464 0 3.09 0.1 0.000
#> 112 1 2.464 0 3.09 0.3 0.000
#> 113 1 2.944 1 2.89 -0.3 2.944
#> 114 1 2.944 1 2.89 -0.1 2.944
#> 115 1 2.944 1 2.89 0.1 2.944
#> 116 1 2.944 1 2.89 0.3 2.944
#> 117 1 2.251 1 3.47 -0.3 2.251
#> 118 1 2.251 1 3.47 -0.1 2.251
#> 119 1 2.251 1 3.47 0.1 2.251
#> 120 1 2.251 1 3.47 0.3 2.251
#> 121 1 1.558 1 3.00 -0.3 1.558
#> 122 1 1.558 1 3.00 -0.1 1.558
#> 123 1 1.558 1 3.00 0.1 1.558
#> 124 1 1.558 1 3.00 0.3 1.558
#> 125 1 0.916 1 3.40 -0.3 0.916
#> 126 1 0.916 1 3.40 -0.1 0.916
#> 127 1 0.916 1 3.40 0.1 0.916
#> 128 1 0.916 1 3.40 0.3 0.916
#> 129 1 1.558 1 2.89 -0.3 1.558
#> 130 1 1.558 1 2.89 -0.1 1.558
#> 131 1 1.558 1 2.89 0.1 1.558
#> 132 1 1.558 1 2.89 0.3 1.558
#> 133 1 1.792 1 3.18 -0.3 1.792
#> 134 1 1.792 1 3.18 -0.1 1.792
#> 135 1 1.792 1 3.18 0.1 1.792
#> 136 1 1.792 1 3.18 0.3 1.792
#> 137 1 2.048 1 3.40 -0.3 2.048
#> 138 1 2.048 1 3.40 -0.1 2.048
#> 139 1 2.048 1 3.40 0.1 2.048
#> 140 1 2.048 1 3.40 0.3 2.048
#> 141 1 1.253 1 3.56 -0.3 1.253
#> 142 1 1.253 1 3.56 -0.1 1.253
#> 143 1 1.253 1 3.56 0.1 1.253
#> 144 1 1.253 1 3.56 0.3 1.253
#> 145 1 1.012 1 3.30 -0.3 1.012
#> 146 1 1.012 1 3.30 -0.1 1.012
#> 147 1 1.012 1 3.30 0.1 1.012
#> 148 1 1.012 1 3.30 0.3 1.012
#> 149 1 2.818 1 3.00 -0.3 2.818
#> 150 1 2.818 1 3.00 -0.1 2.818
#> 151 1 2.818 1 3.00 0.1 2.818
#> 152 1 2.818 1 3.00 0.3 2.818
#> 153 1 2.327 1 3.09 -0.3 2.327
#> 154 1 2.327 1 3.09 -0.1 2.327
#> 155 1 2.327 1 3.09 0.1 2.327
#> 156 1 2.327 1 3.09 0.3 2.327
#> 157 1 0.560 1 3.33 -0.3 0.560
#> 158 1 0.560 1 3.33 -0.1 0.560
#> 159 1 0.560 1 3.33 0.1 0.560
#> 160 1 0.560 1 3.33 0.3 0.560
#> 161 1 1.705 1 3.14 -0.3 1.705
#> 162 1 1.705 1 3.14 -0.1 1.705
#> 163 1 1.705 1 3.14 0.1 1.705
#> 164 1 1.705 1 3.14 0.3 1.705
#> 165 1 1.179 1 3.69 -0.3 1.179
#> 166 1 1.179 1 3.69 -0.1 1.179
#> 167 1 1.179 1 3.69 0.1 1.179
#> 168 1 1.179 1 3.69 0.3 1.179
#> 169 1 2.442 1 3.50 -0.3 2.442
#> 170 1 2.442 1 3.50 -0.1 2.442
#> 171 1 2.442 1 3.50 0.1 2.442
#> 172 1 2.442 1 3.50 0.3 2.442
#> 173 1 2.197 1 3.04 -0.3 2.197
#> 174 1 2.197 1 3.04 -0.1 2.197
#> 175 1 2.197 1 3.04 0.1 2.197
#> 176 1 2.197 1 3.04 0.3 2.197
#> 177 1 2.251 1 3.56 -0.3 2.251
#> 178 1 2.251 1 3.56 -0.1 2.251
#> 179 1 2.251 1 3.56 0.1 2.251
#> 180 1 2.251 1 3.56 0.3 2.251
#> 181 1 0.560 1 3.22 -0.3 0.560
#> 182 1 0.560 1 3.22 -0.1 0.560
#> 183 1 0.560 1 3.22 0.1 0.560
#> 184 1 0.560 1 3.22 0.3 0.560
#> 185 1 2.197 1 3.26 -0.3 2.197
#> 186 1 2.197 1 3.26 -0.1 2.197
#> 187 1 2.197 1 3.26 0.1 2.197
#> 188 1 2.197 1 3.26 0.3 2.197
#> 189 1 1.012 1 3.22 -0.3 1.012
#> 190 1 1.012 1 3.22 -0.1 1.012
#> 191 1 1.012 1 3.22 0.1 1.012
#> 192 1 1.012 1 3.22 0.3 1.012
#> 193 1 3.631 1 3.09 -0.3 3.631
#> 194 1 3.631 1 3.09 -0.1 3.631
#> 195 1 3.631 1 3.09 0.1 3.631
#> 196 1 3.631 1 3.09 0.3 3.631
#> 197 1 1.705 1 3.47 -0.3 1.705
#> 198 1 1.705 1 3.47 -0.1 1.705
#> 199 1 1.705 1 3.47 0.1 1.705
#> 200 1 1.705 1 3.47 0.3 1.705
#> 201 1 2.327 1 3.22 -0.3 2.327
#> 202 1 2.327 1 3.22 -0.1 2.327
#> 203 1 2.327 1 3.22 0.1 2.327
#> 204 1 2.327 1 3.22 0.3 2.327
#> 205 1 2.079 1 3.56 -0.3 2.079
#> 206 1 2.079 1 3.56 -0.1 2.079
#> 207 1 2.079 1 3.56 0.1 2.079
#> 208 1 2.079 1 3.56 0.3 2.079
#> 209 1 2.639 1 3.04 -0.3 2.639
#> 210 1 2.639 1 3.04 -0.1 2.639
#> 211 1 2.639 1 3.04 0.1 2.639
#> 212 1 2.639 1 3.04 0.3 2.639
#> 213 1 1.792 1 3.71 -0.3 1.792
#> 214 1 1.792 1 3.71 -0.1 1.792
#> 215 1 1.792 1 3.71 0.1 1.792
#> 216 1 1.792 1 3.71 0.3 1.792
#> 217 1 1.386 1 3.47 -0.3 1.386
#> 218 1 1.386 1 3.47 -0.1 1.386
#> 219 1 1.386 1 3.47 0.1 1.386
#> 220 1 1.386 1 3.47 0.3 1.386
#> 221 1 1.705 1 3.26 -0.3 1.705
#> 222 1 1.705 1 3.26 -0.1 1.705
#> 223 1 1.705 1 3.26 0.1 1.705
#> 224 1 1.705 1 3.26 0.3 1.705
#> 225 1 1.833 1 3.04 -0.3 1.833
#> 226 1 1.833 1 3.04 -0.1 1.833
#> 227 1 1.833 1 3.04 0.1 1.833
#> 228 1 1.833 1 3.04 0.3 1.833
#> 229 1 1.179 1 3.58 -0.3 1.179
#> 230 1 1.179 1 3.58 -0.1 1.179
#> 231 1 1.179 1 3.58 0.1 1.179
#> 232 1 1.179 1 3.58 0.3 1.179
#> 233 1 1.099 1 3.61 -0.3 1.099
#> 234 1 1.099 1 3.61 -0.1 1.099
#> 235 1 1.099 1 3.61 0.1 1.099
#> 236 1 1.099 1 3.61 0.3 1.099
#> attr(,"assign")
#> [1] 0 1 2 3 4 5
#> attr(,"contrasts")
#> attr(,"contrasts")$trt
#> [1] "contr.treatment"
#>
#> ---end{model.matrix}--------------
#>
#> nobs:
#> -----
#> [1] 236
#> ---end{nobs}--------------
#>
#> predict:
#> -----
#> [1] 1.31207 1.25827 1.20447 1.15067 1.30843 1.25460 1.20076 1.14693
#> [9] 0.92459 0.87001 0.81543 0.76086 1.19203 1.13795 1.08387 1.02979
#> [17] 2.70889 2.65518 2.60146 2.54774 1.85528 1.80217 1.74905 1.69594
#> [25] 1.23282 1.17951 1.12620 1.07289 3.14240 3.08762 3.03285 2.97808
#> [33] 1.84439 1.79123 1.73807 1.68490 1.94168 1.88551 1.82934 1.77317
#> [41] 2.85130 2.79721 2.74312 2.68902 2.09575 2.04216 1.98857 1.93498
#> [49] 1.49626 1.44280 1.38935 1.33589 2.45879 2.40533 2.35187 2.29841
#> [57] 2.81074 2.75772 2.70469 2.65166 1.77418 1.72286 1.67153 1.62021
#> [65] 1.00346 0.95183 0.90020 0.84858 3.47468 3.42051 3.36635 3.31218
#> [73] 1.50295 1.44996 1.39697 1.34399 1.51880 1.46543 1.41206 1.35870
#> [81] 1.32950 1.27579 1.22208 1.16837 1.19565 1.14109 1.08653 1.03197
#> [89] 1.39848 1.34566 1.29284 1.24002 2.07015 2.01625 1.96235 1.90845
#> [97] 3.52400 3.46770 3.41139 3.35509 0.81490 0.76248 0.71005 0.65763
#> [105] 0.98224 0.92848 0.87473 0.82098 2.61300 2.55865 2.50429 2.44994
#> [113] 2.50217 2.44939 2.39660 2.34381 2.06826 2.01504 1.96181 1.90859
#> [121] 0.85706 0.80429 0.75151 0.69873 1.01366 0.95855 0.90344 0.84833
#> [129] 1.48659 1.43169 1.37680 1.32190 1.24066 1.18784 1.13502 1.08221
#> [137] 2.81614 2.75972 2.70330 2.64687 1.50820 1.45305 1.39791 1.34276
#> [145] 0.85183 0.79743 0.74303 0.68863 2.08113 2.02933 1.97753 1.92573
#> [153] 2.07380 2.02030 1.96679 1.91329 0.08291 0.02924 -0.02443 -0.07810
#> [161] 0.88944 0.83732 0.78520 0.73309 1.11668 1.06267 1.00866 0.95465
#> [169] 2.80182 2.74708 2.69234 2.63760 1.94909 1.89541 1.84174 1.78806
#> [177] 2.32659 2.27269 2.21879 2.16490 0.35727 0.30258 0.24789 0.19320
#> [185] 2.13655 2.08260 2.02865 1.97470 0.25178 0.19914 0.14650 0.09385
#> [193] 4.30550 4.25000 4.19450 4.13899 1.35376 1.30068 1.24761 1.19453
#> [201] 2.00955 1.95643 1.90332 1.85020 1.37589 1.32430 1.27271 1.22113
#> [209] 2.86462 2.80977 2.75492 2.70006 1.42055 1.36796 1.31537 1.26278
#> [217] 1.32496 1.27077 1.21657 1.16237 2.40861 2.35194 2.29527 2.23860
#> [225] 0.93354 0.88164 0.82974 0.77784 0.14448 0.09334 0.04220 -0.00893
#> [233] 0.95138 0.89747 0.84355 0.78964
#> ---end{predict}--------------
#>
#> print:
#> -----
#> Formula: y ~ Base * trt + Age + Visit + (Visit | subject)
#> Data: epil2
#> AIC BIC logLik df.resid
#> 1269 1304 -625 226
#> Random-effects (co)variances:
#>
#> Conditional model:
#> Groups Name Std.Dev. Corr
#> subject (Intercept) 0.4660
#> Visit 0.0073 -1.00
#>
#> Number of obs: 236 / Conditional model: subject, 59
#>
#> Dispersion parameter for nbinom2 family (): 7.46
#>
#> Fixed Effects:
#>
#> Conditional model:
#> (Intercept) Base trtprogabide Age
#> -1.322 0.884 -0.928 0.473
#> Visit Base:trtprogabide
#> -0.268 0.336
#> Formula: y ~ Base * trt + Age + Visit + (Visit | subject)
#> Data: epil2
#> AIC BIC logLik df.resid
#> 1269 1304 -625 226
#> Random-effects (co)variances:
#>
#> Conditional model:
#> Groups Name Std.Dev. Corr
#> subject (Intercept) 0.4660
#> Visit 0.0073 -1.00
#>
#> Number of obs: 236 / Conditional model: subject, 59
#>
#> Dispersion parameter for nbinom2 family (): 7.46
#>
#> Fixed Effects:
#>
#> Conditional model:
#> (Intercept) Base trtprogabide Age
#> -1.322 0.884 -0.928 0.473
#> Visit Base:trtprogabide
#> -0.268 0.336
#> ---end{print}--------------
#>
#> ranef:
#> -----
#> $subject
#> (Intercept) Visit
#> 1 0.03606 -5.64e-04
#> 2 0.04787 -7.49e-04
#> 3 0.28508 -4.46e-03
#> 4 0.12652 -1.98e-03
#> 5 0.01070 -1.67e-04
#> 6 -0.18220 2.85e-03
#> 7 -0.11940 1.87e-03
#> 8 0.34778 -5.44e-03
#> 9 -0.16654 2.61e-03
#> 10 0.79451 -1.24e-02
#> 11 0.13058 -2.04e-03
#> 12 -0.03044 4.76e-04
#> 13 -0.07363 1.15e-03
#> 14 -0.07212 1.13e-03
#> 15 -0.20966 3.28e-03
#> 16 -0.75388 1.18e-02
#> 17 -0.65667 1.03e-02
#> 18 0.15399 -2.41e-03
#> 19 -0.22234 3.48e-03
#> 20 -0.10112 1.58e-03
#> 21 0.00820 -1.28e-04
#> 22 0.28005 -4.38e-03
#> 23 -0.27601 4.32e-03
#> 24 0.06948 -1.09e-03
#> 25 0.83654 -1.31e-02
#> 26 -0.40209 6.29e-03
#> 27 0.02199 -3.44e-04
#> 28 0.21407 -3.35e-03
#> 29 -0.28630 4.48e-03
#> 30 -0.14681 2.30e-03
#> 31 -0.28914 4.53e-03
#> 32 0.45572 -7.13e-03
#> 33 0.38701 -6.06e-03
#> 34 -0.27693 4.33e-03
#> 35 0.87528 -1.37e-02
#> 36 0.46665 -7.30e-03
#> 37 0.22843 -3.58e-03
#> 38 -0.60183 9.42e-03
#> 39 -0.05732 8.97e-04
#> 40 -0.00491 7.69e-05
#> 41 -0.50078 7.84e-03
#> 42 0.10417 -1.63e-03
#> 43 0.33673 -5.27e-03
#> 44 -0.00157 2.45e-05
#> 45 0.06814 -1.07e-03
#> 46 0.32149 -5.03e-03
#> 47 0.08453 -1.32e-03
#> 48 -0.33261 5.21e-03
#> 49 0.58012 -9.08e-03
#> 50 -0.19400 3.04e-03
#> 51 -0.18142 2.84e-03
#> 52 -0.66934 1.05e-02
#> 53 0.37292 -5.84e-03
#> 54 -0.34984 5.48e-03
#> 55 0.16421 -2.57e-03
#> 56 0.95361 -1.49e-02
#> 57 -0.56938 8.91e-03
#> 58 -0.81392 1.27e-02
#> 59 0.07356 -1.15e-03
#>
#> ---end{ranef}--------------
#>
#> recover_data:
#> -----
#> Base trt Age Visit
#> 1 1.012 placebo 3.43 -0.3
#> 2 1.012 placebo 3.43 -0.1
#> 3 1.012 placebo 3.43 0.1
#> 4 1.012 placebo 3.43 0.3
#> 5 1.012 placebo 3.40 -0.3
#> 6 1.012 placebo 3.40 -0.1
#> 7 1.012 placebo 3.40 0.1
#> 8 1.012 placebo 3.40 0.3
#> 9 0.405 placebo 3.22 -0.3
#> 10 0.405 placebo 3.22 -0.1
#> 11 0.405 placebo 3.22 0.1
#> 12 0.405 placebo 3.22 0.3
#> 13 0.693 placebo 3.58 -0.3
#> 14 0.693 placebo 3.58 -0.1
#> 15 0.693 placebo 3.58 0.1
#> 16 0.693 placebo 3.58 0.3
#> 17 2.803 placebo 3.09 -0.3
#> 18 2.803 placebo 3.09 -0.1
#> 19 2.803 placebo 3.09 0.1
#> 20 2.803 placebo 3.09 0.3
#> 21 1.910 placebo 3.37 -0.3
#> 22 1.910 placebo 3.37 -0.1
#> 23 1.910 placebo 3.37 0.1
#> 24 1.910 placebo 3.37 0.3
#> 25 1.099 placebo 3.43 -0.3
#> 26 1.099 placebo 3.43 -0.1
#> 27 1.099 placebo 3.43 0.1
#> 28 1.099 placebo 3.43 0.3
#> 29 2.565 placebo 3.74 -0.3
#> 30 2.565 placebo 3.74 -0.1
#> 31 2.565 placebo 3.74 0.1
#> 32 2.565 placebo 3.74 0.3
#> 33 1.749 placebo 3.61 -0.3
#> 34 1.749 placebo 3.61 -0.1
#> 35 1.749 placebo 3.61 0.1
#> 36 1.749 placebo 3.61 0.3
#> 37 0.916 placebo 3.33 -0.3
#> 38 0.916 placebo 3.33 -0.1
#> 39 0.916 placebo 3.33 0.1
#> 40 0.916 placebo 3.33 0.3
#> 41 2.565 placebo 3.58 -0.3
#> 42 2.565 placebo 3.58 -0.1
#> 43 2.565 placebo 3.58 0.1
#> 44 2.565 placebo 3.58 0.3
#> 45 2.110 placebo 3.18 -0.3
#> 46 2.110 placebo 3.18 -0.1
#> 47 2.110 placebo 3.18 0.1
#> 48 2.110 placebo 3.18 0.3
#> 49 1.504 placebo 3.14 -0.3
#> 50 1.504 placebo 3.14 -0.1
#> 51 1.504 placebo 3.14 0.1
#> 52 1.504 placebo 3.14 0.3
#> 53 2.351 placebo 3.58 -0.3
#> 54 2.351 placebo 3.58 -0.1
#> 55 2.351 placebo 3.58 0.1
#> 56 2.351 placebo 3.58 0.3
#> 57 3.080 placebo 3.26 -0.3
#> 58 3.080 placebo 3.26 -0.1
#> 59 3.080 placebo 3.26 0.1
#> 60 3.080 placebo 3.26 0.3
#> 61 2.526 placebo 3.26 -0.3
#> 62 2.526 placebo 3.26 -0.1
#> 63 2.526 placebo 3.26 0.1
#> 64 2.526 placebo 3.26 0.3
#> 65 1.504 placebo 3.33 -0.3
#> 66 1.504 placebo 3.33 -0.1
#> 67 1.504 placebo 3.33 0.1
#> 68 1.504 placebo 3.33 0.3
#> 69 3.323 placebo 3.43 -0.3
#> 70 3.323 placebo 3.43 -0.1
#> 71 3.323 placebo 3.43 0.1
#> 72 3.323 placebo 3.43 0.3
#> 73 1.504 placebo 3.47 -0.3
#> 74 1.504 placebo 3.47 -0.1
#> 75 1.504 placebo 3.47 0.1
#> 76 1.504 placebo 3.47 0.3
#> 77 1.609 placebo 3.04 -0.3
#> 78 1.609 placebo 3.04 -0.1
#> 79 1.609 placebo 3.04 0.1
#> 80 1.609 placebo 3.04 0.3
#> 81 1.099 placebo 3.37 -0.3
#> 82 1.099 placebo 3.37 -0.1
#> 83 1.099 placebo 3.37 0.1
#> 84 1.099 placebo 3.37 0.3
#> 85 0.811 placebo 3.04 -0.3
#> 86 0.811 placebo 3.04 -0.1
#> 87 0.811 placebo 3.04 0.1
#> 88 0.811 placebo 3.04 0.3
#> 89 1.447 placebo 3.47 -0.3
#> 90 1.447 placebo 3.47 -0.1
#> 91 1.447 placebo 3.47 0.1
#> 92 1.447 placebo 3.47 0.3
#> 93 1.946 placebo 3.22 -0.3
#> 94 1.946 placebo 3.22 -0.1
#> 95 1.946 placebo 3.22 0.1
#> 96 1.946 placebo 3.22 0.3
#> 97 2.621 placebo 3.40 -0.3
#> 98 2.621 placebo 3.40 -0.1
#> 99 2.621 placebo 3.40 0.1
#> 100 2.621 placebo 3.40 0.3
#> 101 0.811 placebo 3.69 -0.3
#> 102 0.811 placebo 3.69 -0.1
#> 103 0.811 placebo 3.69 0.1
#> 104 0.811 placebo 3.69 0.3
#> 105 0.916 placebo 2.94 -0.3
#> 106 0.916 placebo 2.94 -0.1
#> 107 0.916 placebo 2.94 0.1
#> 108 0.916 placebo 2.94 0.3
#> 109 2.464 placebo 3.09 -0.3
#> 110 2.464 placebo 3.09 -0.1
#> 111 2.464 placebo 3.09 0.1
#> 112 2.464 placebo 3.09 0.3
#> 113 2.944 progabide 2.89 -0.3
#> 114 2.944 progabide 2.89 -0.1
#> 115 2.944 progabide 2.89 0.1
#> 116 2.944 progabide 2.89 0.3
#> 117 2.251 progabide 3.47 -0.3
#> 118 2.251 progabide 3.47 -0.1
#> 119 2.251 progabide 3.47 0.1
#> 120 2.251 progabide 3.47 0.3
#> 121 1.558 progabide 3.00 -0.3
#> 122 1.558 progabide 3.00 -0.1
#> 123 1.558 progabide 3.00 0.1
#> 124 1.558 progabide 3.00 0.3
#> 125 0.916 progabide 3.40 -0.3
#> 126 0.916 progabide 3.40 -0.1
#> 127 0.916 progabide 3.40 0.1
#> 128 0.916 progabide 3.40 0.3
#> 129 1.558 progabide 2.89 -0.3
#> 130 1.558 progabide 2.89 -0.1
#> 131 1.558 progabide 2.89 0.1
#> 132 1.558 progabide 2.89 0.3
#> 133 1.792 progabide 3.18 -0.3
#> 134 1.792 progabide 3.18 -0.1
#> 135 1.792 progabide 3.18 0.1
#> 136 1.792 progabide 3.18 0.3
#> 137 2.048 progabide 3.40 -0.3
#> 138 2.048 progabide 3.40 -0.1
#> 139 2.048 progabide 3.40 0.1
#> 140 2.048 progabide 3.40 0.3
#> 141 1.253 progabide 3.56 -0.3
#> 142 1.253 progabide 3.56 -0.1
#> 143 1.253 progabide 3.56 0.1
#> 144 1.253 progabide 3.56 0.3
#> 145 1.012 progabide 3.30 -0.3
#> 146 1.012 progabide 3.30 -0.1
#> 147 1.012 progabide 3.30 0.1
#> 148 1.012 progabide 3.30 0.3
#> 149 2.818 progabide 3.00 -0.3
#> 150 2.818 progabide 3.00 -0.1
#> 151 2.818 progabide 3.00 0.1
#> 152 2.818 progabide 3.00 0.3
#> 153 2.327 progabide 3.09 -0.3
#> 154 2.327 progabide 3.09 -0.1
#> 155 2.327 progabide 3.09 0.1
#> 156 2.327 progabide 3.09 0.3
#> 157 0.560 progabide 3.33 -0.3
#> 158 0.560 progabide 3.33 -0.1
#> 159 0.560 progabide 3.33 0.1
#> 160 0.560 progabide 3.33 0.3
#> 161 1.705 progabide 3.14 -0.3
#> 162 1.705 progabide 3.14 -0.1
#> 163 1.705 progabide 3.14 0.1
#> 164 1.705 progabide 3.14 0.3
#> 165 1.179 progabide 3.69 -0.3
#> 166 1.179 progabide 3.69 -0.1
#> 167 1.179 progabide 3.69 0.1
#> 168 1.179 progabide 3.69 0.3
#> 169 2.442 progabide 3.50 -0.3
#> 170 2.442 progabide 3.50 -0.1
#> 171 2.442 progabide 3.50 0.1
#> 172 2.442 progabide 3.50 0.3
#> 173 2.197 progabide 3.04 -0.3
#> 174 2.197 progabide 3.04 -0.1
#> 175 2.197 progabide 3.04 0.1
#> 176 2.197 progabide 3.04 0.3
#> 177 2.251 progabide 3.56 -0.3
#> 178 2.251 progabide 3.56 -0.1
#> 179 2.251 progabide 3.56 0.1
#> 180 2.251 progabide 3.56 0.3
#> 181 0.560 progabide 3.22 -0.3
#> 182 0.560 progabide 3.22 -0.1
#> 183 0.560 progabide 3.22 0.1
#> 184 0.560 progabide 3.22 0.3
#> 185 2.197 progabide 3.26 -0.3
#> 186 2.197 progabide 3.26 -0.1
#> 187 2.197 progabide 3.26 0.1
#> 188 2.197 progabide 3.26 0.3
#> 189 1.012 progabide 3.22 -0.3
#> 190 1.012 progabide 3.22 -0.1
#> 191 1.012 progabide 3.22 0.1
#> 192 1.012 progabide 3.22 0.3
#> 193 3.631 progabide 3.09 -0.3
#> 194 3.631 progabide 3.09 -0.1
#> 195 3.631 progabide 3.09 0.1
#> 196 3.631 progabide 3.09 0.3
#> 197 1.705 progabide 3.47 -0.3
#> 198 1.705 progabide 3.47 -0.1
#> 199 1.705 progabide 3.47 0.1
#> 200 1.705 progabide 3.47 0.3
#> 201 2.327 progabide 3.22 -0.3
#> 202 2.327 progabide 3.22 -0.1
#> 203 2.327 progabide 3.22 0.1
#> 204 2.327 progabide 3.22 0.3
#> 205 2.079 progabide 3.56 -0.3
#> 206 2.079 progabide 3.56 -0.1
#> 207 2.079 progabide 3.56 0.1
#> 208 2.079 progabide 3.56 0.3
#> 209 2.639 progabide 3.04 -0.3
#> 210 2.639 progabide 3.04 -0.1
#> 211 2.639 progabide 3.04 0.1
#> 212 2.639 progabide 3.04 0.3
#> 213 1.792 progabide 3.71 -0.3
#> 214 1.792 progabide 3.71 -0.1
#> 215 1.792 progabide 3.71 0.1
#> 216 1.792 progabide 3.71 0.3
#> 217 1.386 progabide 3.47 -0.3
#> 218 1.386 progabide 3.47 -0.1
#> 219 1.386 progabide 3.47 0.1
#> 220 1.386 progabide 3.47 0.3
#> 221 1.705 progabide 3.26 -0.3
#> 222 1.705 progabide 3.26 -0.1
#> 223 1.705 progabide 3.26 0.1
#> 224 1.705 progabide 3.26 0.3
#> 225 1.833 progabide 3.04 -0.3
#> 226 1.833 progabide 3.04 -0.1
#> 227 1.833 progabide 3.04 0.1
#> 228 1.833 progabide 3.04 0.3
#> 229 1.179 progabide 3.58 -0.3
#> 230 1.179 progabide 3.58 -0.1
#> 231 1.179 progabide 3.58 0.1
#> 232 1.179 progabide 3.58 0.3
#> 233 1.099 progabide 3.61 -0.3
#> 234 1.099 progabide 3.61 -0.1
#> 235 1.099 progabide 3.61 0.1
#> 236 1.099 progabide 3.61 0.3
#> ---end{recover_data}--------------
#>
#> refit:
#> -----
#> ** Error: argument "newresp" is missing, with no default
#> ---end{refit}--------------
#>
#> residuals:
#> -----
#> 1 2 3 4 5 6 7 8
#> 1.28616 -0.51932 -0.33500 -0.16032 -0.70036 1.49358 -0.32265 -0.14850
#> 9 10 11 12 13 14 15 16
#> -0.52082 1.61307 -2.26015 2.85989 0.70623 0.87963 -1.95610 1.19952
#> 17 18 19 20 21 22 23 24
#> -8.01266 3.77251 -4.48338 8.22181 -1.39350 -4.06278 2.25084 1.54823
#> 25 26 27 28 29 30 31 32
#> 2.56912 0.74723 -3.08390 -0.92381 16.84072 -1.92488 0.24372 -7.64997
#> 33 34 35 36 37 38 39 40
#> -1.32427 0.00317 0.31365 -0.39194 7.02952 6.41027 -0.22978 -5.88949
#> 41 42 43 44 45 46 47 48
#> 8.68965 -4.39885 -9.53535 7.28268 3.86846 -1.70725 0.69490 -2.92393
#> 49 50 51 52 53 54 55 56
#> -0.46494 -0.23254 1.98777 -1.80339 -4.69066 -2.08210 1.49477 4.04162
#> 57 58 59 60 61 62 63 64
#> -0.62229 8.23619 -4.94966 -5.17756 5.10456 -5.60050 -5.32031 -0.05413
#> 65 66 67 68 69 70 71 72
#> -2.72771 -2.59045 0.53989 0.66368 4.71255 -1.58508 -0.97246 1.55513
#> 73 74 75 76 77 78 79 80
#> -1.49494 0.73704 -2.04295 1.16570 -1.56674 -4.32941 1.89558 3.10889
#> 81 82 83 84 85 86 87 88
#> -0.77914 0.41848 -0.39423 0.78326 -0.30571 0.86982 0.03603 1.19342
#> 89 90 91 92 93 94 95 96
#> -2.04903 -0.84071 -0.64310 1.54433 0.07396 4.48988 -5.11602 1.25739
#> 97 98 99 100 101 102 103 104
#> -15.91980 -8.06278 45.69258 -3.64817 -0.25896 -1.14358 -0.03410 -0.93020
#> 105 106 107 108 109 110 111 112
#> 0.32957 -1.53067 1.60177 -0.27272 -0.63994 2.08167 0.76510 0.41237
#> 113 114 115 116 117 118 119 120
#> -1.20902 2.41876 -1.98574 -2.42087 0.08892 -0.50103 1.88778 -2.74357
#> 121 122 123 124 125 126 127 128
#> -2.35623 1.76490 0.87981 -2.01119 0.24433 3.39209 -1.46808 0.66426
#> 129 130 131 132 133 134 135 136
#> -2.42199 1.81422 3.03781 0.24945 0.54211 -0.27999 -2.11125 0.04882
#> 137 138 139 140 141 142 143 144
#> 5.28770 1.20458 4.07115 1.89018 0.48142 -0.27615 2.95328 0.17039
#> 145 146 147 148 149 150 151 152
#> -0.34393 1.78017 -2.10230 2.00901 -5.01350 -0.60897 -0.22485 0.13987
#> 153 154 155 156 157 158 159 160
#> -3.95503 10.45942 -5.14772 -1.77533 0.91356 -0.02967 0.02413 -0.92487
#> 161 162 163 164 165 166 167 168
#> -2.43376 -0.31016 1.80715 -2.08149 1.94529 1.10590 -2.74193 0.40223
#> 169 170 171 172 173 174 175 176
#> -5.47459 -1.59704 10.23378 1.02034 2.97767 -1.65531 -3.30747 2.02218
#> 177 178 179 180 181 182 183 184
#> 8.75705 -2.70549 -3.19624 -1.71370 -0.42943 -0.35335 0.71868 1.78687
#> 185 186 187 188 189 190 191 192
#> -2.47015 1.97470 0.39619 0.79554 0.71368 -0.22035 -1.15777 -1.09840
#> 193 194 195 196 197 198 199 200
#> 27.89401 -5.10513 5.67974 0.26027 0.12804 -0.67180 -1.48200 0.69800
#> 201 202 203 204 205 206 207 208
#> 0.54005 -1.07404 -1.70810 0.63892 -2.95861 -0.75957 -2.57053 1.60900
#> 209 210 211 212 213 214 215 216
#> 0.45763 -5.60605 12.28029 -1.88068 1.86062 -0.92732 0.27388 -3.53523
#> 217 218 219 220 221 222 223 224
#> -0.76205 1.43642 0.62442 -0.19750 -10.11845 12.49410 9.07291 -1.38016
#> 225 226 227 228 229 230 231 232
#> -0.54350 0.58514 -2.29272 -1.17676 -1.15543 -1.09783 -1.04311 -0.99111
#> 233 234 235 236
#> -1.58929 1.54661 0.67539 -0.20260
#> ---end{residuals}--------------
#>
#> sigma:
#> -----
#> [1] 7.46
#> ---end{sigma}--------------
#>
#> simulate:
#> -----
#> sim_1
#> 1 2
#> 2 2
#> 3 7
#> 4 3
#> 5 7
#> 6 9
#> 7 6
#> 8 11
#> 9 4
#> 10 0
#> 11 0
#> 12 5
#> 13 4
#> 14 2
#> 15 1
#> 16 4
#> 17 7
#> 18 9
#> 19 6
#> 20 10
#> 21 6
#> 22 10
#> 23 5
#> 24 3
#> 25 2
#> 26 4
#> 27 3
#> 28 5
#> 29 9
#> 30 29
#> 31 11
#> 32 24
#> 33 15
#> 34 4
#> 35 15
#> 36 8
#> 37 4
#> 38 1
#> 39 3
#> 40 5
#> 41 8
#> 42 27
#> 43 21
#> 44 12
#> 45 36
#> 46 24
#> 47 25
#> 48 3
#> 49 6
#> 50 11
#> 51 7
#> 52 2
#> 53 7
#> 54 2
#> 55 5
#> 56 3
#> 57 39
#> 58 20
#> 59 19
#> 60 34
#> 61 3
#> 62 9
#> 63 4
#> 64 7
#> 65 27
#> 66 9
#> 67 11
#> 68 9
#> 69 31
#> 70 26
#> 71 17
#> 72 17
#> 73 4
#> 74 2
#> 75 2
#> 76 1
#> 77 3
#> 78 2
#> 79 1
#> 80 4
#> 81 4
#> 82 8
#> 83 16
#> 84 2
#> 85 8
#> 86 8
#> 87 4
#> 88 9
#> 89 6
#> 90 11
#> 91 6
#> 92 5
#> 93 6
#> 94 3
#> 95 3
#> 96 7
#> 97 11
#> 98 4
#> 99 11
#> 100 7
#> 101 8
#> 102 6
#> 103 5
#> 104 11
#> 105 2
#> 106 8
#> 107 3
#> 108 2
#> 109 1
#> 110 3
#> 111 2
#> 112 5
#> 113 7
#> 114 3
#> 115 10
#> 116 4
#> 117 11
#> 118 2
#> 119 5
#> 120 1
#> 121 7
#> 122 3
#> 123 1
#> 124 4
#> 125 2
#> 126 3
#> 127 3
#> 128 6
#> 129 2
#> 130 4
#> 131 2
#> 132 2
#> 133 1
#> 134 1
#> 135 0
#> 136 3
#> 137 6
#> 138 14
#> 139 8
#> 140 3
#> 141 2
#> 142 4
#> 143 4
#> 144 1
#> 145 1
#> 146 3
#> 147 0
#> 148 3
#> 149 7
#> 150 3
#> 151 1
#> 152 7
#> 153 18
#> 154 6
#> 155 10
#> 156 8
#> 157 0
#> 158 0
#> 159 1
#> 160 0
#> 161 3
#> 162 2
#> 163 3
#> 164 3
#> 165 4
#> 166 7
#> 167 1
#> 168 8
#> 169 18
#> 170 11
#> 171 20
#> 172 4
#> 173 7
#> 174 5
#> 175 9
#> 176 6
#> 177 12
#> 178 2
#> 179 8
#> 180 15
#> 181 0
#> 182 0
#> 183 0
#> 184 3
#> 185 1
#> 186 3
#> 187 4
#> 188 2
#> 189 1
#> 190 2
#> 191 3
#> 192 1
#> 193 38
#> 194 28
#> 195 23
#> 196 19
#> 197 16
#> 198 3
#> 199 11
#> 200 1
#> 201 9
#> 202 7
#> 203 3
#> 204 7
#> 205 9
#> 206 2
#> 207 10
#> 208 9
#> 209 10
#> 210 17
#> 211 1
#> 212 9
#> 213 10
#> 214 13
#> 215 3
#> 216 5
#> 217 0
#> 218 3
#> 219 4
#> 220 5
#> 221 3
#> 222 1
#> 223 5
#> 224 2
#> 225 4
#> 226 4
#> 227 5
#> 228 5
#> 229 5
#> 230 8
#> 231 5
#> 232 4
#> 233 0
#> 234 2
#> 235 2
#> 236 2
#> ---end{simulate}--------------
#>
#> summary:
#> -----
#> Family: nbinom2 ( log )
#> Formula: y ~ Base * trt + Age + Visit + (Visit | subject)
#> Data: epil2
#>
#> AIC BIC logLik deviance df.resid
#> 1269 1304 -625 1249 226
#>
#> Random effects:
#>
#> Conditional model:
#> Groups Name Variance Std.Dev. Corr
#> subject (Intercept) 2.17e-01 0.4660
#> Visit 5.33e-05 0.0073 -1.00
#> Number of obs: 236, groups: subject, 59
#>
#> Dispersion parameter for nbinom2 family (): 7.46
#>
#> Conditional model:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.322 1.197 -1.10 0.269
#> Base 0.884 0.131 6.74 1.6e-11 ***
#> trtprogabide -0.928 0.402 -2.31 0.021 *
#> Age 0.473 0.353 1.34 0.180
#> Visit -0.268 0.173 -1.55 0.121
#> Base:trtprogabide 0.336 0.204 1.65 0.100 .
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> ---end{summary}--------------
#>
#> terms:
#> -----
#> y ~ Base * trt + Age + Visit
#> attr(,"variables")
#> list(y, Base, trt, Age, Visit)
#> attr(,"factors")
#> Base trt Age Visit Base:trt
#> y 0 0 0 0 0
#> Base 1 0 0 0 1
#> trt 0 1 0 0 1
#> Age 0 0 1 0 0
#> Visit 0 0 0 1 0
#> attr(,"term.labels")
#> [1] "Base" "trt" "Age" "Visit" "Base:trt"
#> attr(,"order")
#> [1] 1 1 1 1 2
#> attr(,"intercept")
#> [1] 1
#> attr(,"response")
#> [1] 1
#> attr(,".Environment")
#> <environment: 0x7fa874e3ac80>
#> attr(,"predvars")
#> list(y, Base, trt, Age, Visit)
#> attr(,"dataClasses")
#> y Base trt Age Visit
#> "numeric" "numeric" "factor" "numeric" "numeric"
#> ---end{terms}--------------
#>
#> vcov:
#> -----
#> Conditional model:
#> (Intercept) Base trtprogabide Age Visit
#> (Intercept) 1.43367 -0.022869 0.03038 -0.41260 0.008344
#> Base -0.02287 0.017201 0.03157 -0.00242 0.000321
#> trtprogabide 0.03038 0.031572 0.16143 -0.02925 0.001870
#> Age -0.41260 -0.002417 -0.02925 0.12451 -0.002613
#> Visit 0.00834 0.000321 0.00187 -0.00261 0.030015
#> Base:trtprogabide -0.03366 -0.017596 -0.07637 0.01951 -0.001092
#> Base:trtprogabide
#> (Intercept) -0.03366
#> Base -0.01760
#> trtprogabide -0.07637
#> Age 0.01951
#> Visit -0.00109
#> Base:trtprogabide 0.04172
#>
#> ---end{vcov}--------------
#>
#> weights:
#> -----
#> NULL
#> ---end{weights}--------------
#>
options(op)
# }